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2 Truncated Physical Model for Dynamic Sensor
3 Networks with Applications in High-Resolution
4 Mobile Sensing and BIGDATA
5 Thomas J. Matarazzo, S.M.ASCE1; and Shamim N. Pakzad, A.M.ASCE2

6 Abstract: Historically, structural health monitoring (SHM) has relied on fixed sensors, which remain at specific locations in a structural
7 system throughout data collection. This paper introduces state-space approaches for processing data from sensor networks with time-variant
8 configurations, for which a novel truncated physical model (TPM) is proposed. The state-space model is a popular representation of the
9 second-order equation of motion for a multidegree of freedom (MDOF) system in first-order matrix form based on field measurements

10 and system states. In this mathematical model, a spatially dense observation space on the physical structure dictates an equivalently large
11 modeling space, i.e., more total sensing nodes require a more complex dynamic model. Furthermore, such sensing nodes are expected to
12 coincide with state variable DOF. Thus, the model complexity of the underlying dynamic linear model depends on the spatial resolution of the
13 sensors during data acquisition. As sensor network technologies evolve and with increased use of innovative sensing techniques in practice, it
14 is desirable to decouple the size of the dynamic systemmodel from the spatial grid applied throughmeasurement. This paper defines a new data
15 class called dynamic sensor network (DSN) data, for efficiently storing sensor measurements from a very dense spatial grid (verymany sensing
16 nodes). Three exact mathematical models are developed to relate observed DSN data to the underlying structural system. Candidate models are
17 compared from a computational perspective and a truncated physical model (TPM) is presented as an efficient technique to process DSN data
18 while reducing the size of the state variable. The role of basis functions in the approximation of mode shape regression is also established. Two
19 examples are provided to demonstrate new applications of DSN that would otherwise be computationally prohibitive: high-resolution mobile
20 sensing and BIGDATA processing. DOI: 10.1061/(ASCE)EM.1943-7889.0001022. © 2016 American Society of Civil Engineers.
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22 Introduction

23 Structural health monitoring (SHM) endeavors began as observa-
24 tions of operational vibrations of long-span bridges as early as the
25 1930s (Carder 1937) with increasing participation through the
26 1960s (Vincent 1962). By the late 1970s, numerous modal identi-
27 fication studies (Abdel-Ghaffar 1976; McLamore et al. 1971;
28 Rainer and Selst 1976; Trifunac 1970) had established prom-
29 ising results and provided the motivation for modern techniques.
30 Through recent advancements in data processing, storage, mobile
31 computing, and sensing technology, SHM techniques have evolved
32 into repeatable, sophisticated analyses, often embedding statistical
33 frameworks or using statistical tests for decision making (Andersen
34 et al. 1999; Dorvash et al. 2014b; Juang and Pappa 1984; Lei et al.
35 2003; Shahidi et al. 2015; Smyth et al. 2003). A glimpse of the
36 recent growth in system identification methods is particularly
37 evident through the comparison of Abdel-Ghaffar and Scanlan
38 (1985) and Pakzad and Fenves (2009)—two analyses of ambient
39 vibrations observed at the Golden Gate Bridge, separated by two
40 decades.

41However, all past SHM efforts have had one common attribute:
42a reliance on fixed sensor networks during data collection and
43processing. This dependency restricts the spatial information within
44the observed data. For example, in system identification (SID), the
45spatial resolution of the mode shapes is dependent on the arrange-
46ment of the fixed sensors (Matarazzo and Pakzad 2015b). Despite
47numerous implementations of spatially dense sensor networks
48(Dorvash et al. 2014a; Inaudi and Glisic 2010; Pakzad et al.
492008; Shahidi et al. 2015; Zhu et al. 2012) once instrumented, each
50sensor has remained at its position throughout collection of a single
51data set.
52In the context of this paper, a single data set is defined as a time
53series matrix of measured values to be processed simultaneously.
54Some studies have, in fact, recorded data with moving sensors;
55however, in such cases, either the data were split into several
56smaller data sets based on each sensor configuration and analyzed
57as fixed network data (Zhu et al. 2012) or spatial information
58(precise positions of the sensors) was either not measured or
59ignored (Cerda et al. 2012; Gonzalez et al. 2012; Lin and Yang
602005; McGetrick et al. 2009; Yang et al. 2004). Note in absence
61of the sensors’ spatial information, the data set is not compatible
62with state-space approaches and a comprehensive system identifi-
63cation is not possible.
64Moreover, for the exception of Matarazzo and Pakzad (2014,
652015b), SHM processing is currently limited to analyzing one fixed
66sensor network configuration at a time. Data from multiple sensor
67configurations must be split into multiple data sets and analyzed
68separately as in Zhu et al. (2012). To be clear, this is not intended
69to be a criticism on the direction of SHM; this is simply an explo-
70ration into a new frontier of sensing and data processing.
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71 The development and implementation of new sensor technolo-
72 gies as well as the techniques for processing new forms of data
73 sets efficiently are motivated by both an improvement in extractable
74 structural information and a reduction in network setup efforts.
75 Subsequent new data classes often have inherently different proper-
76 ties in comparison to typical fixed sensor data, which dominate
77 SHM today, and create unique processing challenges, e.g., fusion
78 of data sampled at different rates (Smyth and Wu 2007), data
79 with missing observations or data from mobile sensors networks
80 (Matarazzo and Pakzad 2015b; Matarazzo et al. 2015b), or
81 prohibitively large data dimensions of BIGDATA (Matarazzo et al.
82 2015a).
83 This paper proposes and examines dynamic sensor network
84 data. In brief, data from a dynamic sensor network (DSN) are
85 an amalgamation of measurements from numerous sensing con-
86 figurations. The merit of DSN data is its high capacity for storing
87 spatial information; measurements from a very large quantity of
88 sensing nodes can be condensed into a much smaller matrix.
89 For example, high-resolution mobile sensor networks or BIGDATA
90 are efficiently represented in DSN data.
91 This paper is organized as follows. The section “Dynamic
92 Sensor Network Data” defines fundamental properties of DSN and
93 corresponding DSN data sets. The section “Exact State-Space
94 Models for Dynamic Sensor Networks” presents two state-space
95 models that have been suited for processing DSN data and intro-
96 duces the truncated physical model (TPM) as an efficient model for
97 processing data of this class. The section “Mode Shape Regression
98 Using Basis Functions” discusses the use of the sinc and spline
99 basis functions for approximating the mode shape regression term,

100 which is included in the state-space models considered. The section
101 “Processing Data from Novel Sensing Techniques” utilizes the pro-
102 posed TPM for two novel sensing techniques: high-resolution
103 mobile sensing and BIGDATA. Finally, the challenges in process-
104 ing DSN data are summarized, the advantages of the TPM are
105 reviewed, and a catalog of the nomenclature used among the
106 state-space models is provided.

107 Dynamic Sensor Network Data

108 This section introduces the concept of a dynamic sensor network
109 (DSN) and the form of its corresponding DSN data. The dynamic
110 nature of DSN is well exemplified by a network of sensors that
111 physically move in space while recording data in time. In this
112 case, each sensor channel is a time series from various points in
113 space, and when concatenated, the sensor channels form a DSN
114 data matrix. It is fundamental that the coordinates of each sensor
115 are known for every sample. Assume sensor locations are stored in
116 a sensor-position matrix. Through use of this sensor-position
117 matrix, the DSN data entries, which are mixed space-time mea-
118 surements, can be decoded and properly included in a mathemati-
119 cal model.
120 Spatial discontinuities are the definitive characteristic of DSN
121 data and are evident by inspection of the sensor-position matrix. In
122 this case, sensing locations vary with time due to sensor mobility,
123 and in general, a time step in which the position of any sensor
124 changes indicates a spatial discontinuity in the DSN data matrix.
125 This paper focuses on analyzing DSN data in this form, i.e., as a
126 single matrix, without splitting the data into configuration-based
127 pieces at spatial discontinuities. The remainder of this section
128 further defines properties of DSN, DSN data, and their applica-
129 tions. In the following section, modeling approaches are proposed
130 to account for the spatial discontinuities present in DSN data.

131Sensors, Sensing Nodes, and Observations

132In fixed sensor networks, sensing nodes are exactly the points
133where the sensors are installed. Typically, when these measure-
134ments are incorporated into the state-space model, the system states
135(structural DOF) are, by default, assigned at these same sensing
136nodes. In DSN, sensing nodes define the measurement space: the
137spatial grid that contains the recorded sensor data. Therefore, in
138DSN it is necessary to differentiate between these entities. For a
139given DSN data matrix, let the observations be the total number
140of columns NO in the matrix, let the total number of sensing nodes
141be N, and let the total number of sensors (measurement channels)
142be Nmc. The ratios between these entities vary with each sensing
143technique, but in general, N is a very large integer.

144General Types of DSN

145A physical DSN system is not required to obtain DSN data. There
146are three general types of DSN data, each characterized by the
147source of the inherent spatial discontinuities: online, offline, and
148hybrid. Online DSN data come from a physical DSN, a time-
149varying sensor arrangement that records data, without pause, using
150multiple sensing configurations (groups). In this case, switches be-
151tween groups are due to the physical movement of some (if not all)
152sensors during data collection. Offline DSN data are extracted from
153a fixed sensor network after data collection. For offline DSN,
154nearly all data parameters, including sensor group sizes and group
155switching schedules, are customized by the user after data collec-
156tion. Lastly, hybrid DSN data combine online and offline DSN;
157sensing subgroups are extracted from a physical DSN, but after data
158collection. The following two subsections consider an application
159of online and offline DSN, respectively.

160High-Resolution Mobile Sensing as an Online DSN

161In high-resolution mobile sensing, relatively few moving sensors
162scan a very large number of sensing nodes. A general illustration
163of this form of online DSN is provided in Fig. 1, where a group of
164three moving sensors collects N − 2 samples over N sensing nodes.
165The sensing group moves at a constant velocity and shifts to a new
166set of nodes after each sample, more specifically, each sensor
167moves to the next node to the right. The constant physical obser-
168vation switching of this sampling mechanism causes spatial discon-
169tinuities in the DSN data matrix at every time step. Data collection

F1:1Fig. 1.General illustration of processing high-resolution mobile sensor
F1:2data; three moving sensors simultaneously pass through N sensing
F1:3nodes while sampling; the sensors move rightward in increments of
F1:4one node per sample with N − 2 samples in total; the corresponding
F1:5online DSN data matrix is provided with spatial discontinuities at every
F1:6sample
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170 begins when all sensors are at sensing nodes on the left and ends
171 when all sensing nodes have been scanned, i.e., N − 2 samples in
172 total. In this case, the observation size NO is equal to the number of
173 sensors Nmc, both of which are much smaller than the number of
174 sensing nodes N, i.e., NO ¼ Nmc and NO;Nmc ≪ N.

175 Processing BIGDATA as Offline DSN Data

176 In one definition, BIGDATA refers to a very large data matrix con-
177 taining samples from a very large number of sensors (equally many
178 sensing nodes), the result of a large-scale SHM endeavor. It is
179 not feasible nor in many cases is it necessary to process all of this
180 BIGDATA simultaneously, if at all; even simple operations such as
181 uploading all measured data for processing could require signifi-
182 cant computational efforts (Matarazzo et al. 2015a). A useful strat-
183 egy is to extract an information-packed subset, an offline DSN data
184 set, from the BIGDATA population, i.e., a user-selected data matrix
185 in which a vast amount of spatial information is condensed into a
186 small size. A benefit of this approach is the high versatility of off-
187 line DSN data. Given BIGDATA, there are numerous potential
188 offline DSN data sets since the user has the ability to choose every
189 entry of the subset, which can be of any size (of course, not exceed-
190 ing BIGDATA dimensions).
191 A general illustration of this type of offline DSN data is pro-
192 vided in the example in Fig. 2 where three distinct sensing groups
193 form the data matrix: group 1 includes nodes 2, g, and i; group 2
194 includes nodes 3, f − 1, and f; group 3 includes nodes f þ 1, h,
195 and N − 1. The K × NO DSN data matrix contains spatial discon-
196 tinuities at k ¼ J þ 1 and k ¼ Lþ 1 corresponding with user-se-
197 lected sensing groups. In this case, the observation size is three
198 (NO ¼ 3), which is much smaller than the number of fixed sensors
199 instrumented at the sensing nodes, i.e., NO ≪ Nmc and Nmc ¼ N.

200Exact State-Space Models for Dynamic Sensor
201Networks

202This section introduces exact state-space models in which under-
203lying state DOF responses are mapped from DSN data. The fol-
204lowing subsections present three state-space models that represent
205a structural system exactly and have been tailored to incorporate
206DSN data properly. The sizes of these models and their corre-
207sponding efficiencies are discussed and compared. The first
208two subsections present modified versions of the familiar stan-
209dard and modal state-space models that simultaneously consider
210a small number of observations (NO data columns) and a large
211number of sensing nodes (N locations); in these situations, the
212benefits of DSN data are most evident. The adjustments to these
213models have a physical significance: they relate the structural re-
214sponse at one location to the response at another. Despite their
215similar mathematical forms, each model has distinct attributes
216and challenges.
217In the third subsection, the truncated physical model (TPM) is
218introduced as an efficient solution for modeling DSN observations.
219In this context, an efficient model remains exact and requires min-
220imal computational efforts; this is dictated by the sizes of model
221parameters (matrices), which are dependent on the definitions of
222the state variable and the observations.
223Consider the second-order continuous-time equation of motion
224for a linear N-DOF system, where N is a very large integer

m̄ üðtÞ þ c̄ u̇ðtÞ þ k̄uðtÞ ¼ BfηðtÞ ð1Þ

225The locations of the N lumped masses are defined by the spatial
226vector s ¼ ½ s1 s2 : : : sN �T. Note there is a DOF at every
227sensing node, i.e., they are coincident. Sampled structural re-
228sponses (at sampling rate fs ¼ 1=Δt) are available at all DOF
229via the full spatial vector s. Similarly, a general subset of these
230DOF, called si, is comprised of some elements in s, i.e., si ⊂ s,
231and refers to responses at selected DOF. Various spatial subvectors
232of this form will be introduced to reference specific DOF subsets, as
233opposed to all N DOF at once. The structural responses considered
234are defined for time steps k ¼ 1; 2; : : : ;K: where ukðsiÞ is a vector
235of displacements at DOF defined by si at time step k; u̇kðsiÞ is a
236vector of velocities at DOF defined by si at time step k; and ükðsiÞ
237is a vector of accelerations at DOF defined by si at time step k.
238In this section, the standard state-space model, modal state-
239space model, and truncated physical model (TPM) are formulated
240with the objective of using field measurements (observations) atNO
241sensing nodes defined by sO ⊂ s to describe the behavior of the
242structural system through the state variable, e.g., xk. The observa-
243tion vector yk describes the exact responses at NO DOF defined by
244sO ⊂ s as shown in Eq. (2) and remains valid for all subsequent
245state-space models

yk ≡ ükðsOÞ ð2Þ

246Some final notes are necessary before the models are presented.
247The primary difference between typical state-space models for
248fixed sensor networks and those for dynamic sensor networks
249(DSN) (which are presented in the following subsections) is that
250the latter require the sensors’ positions to be known precisely.
251For DSN, the locations of the observations will be a function of
252time step k, i.e.,O ¼ OðkÞ. Consider sO as the kth row (transposed)
253of a K × NO sensor-position matrix, SO, corresponding to the sen-
254sors in the DSN data matrix. For simplicity, this will not be explic-
255itly included in successive notation; however, in the following
256subsections, model entities that depend on sO will also vary at every
257time step, e.g., ΦO.

F2:1 Fig. 2. General illustration of processing BIGDATA using three obser-
F2:2 vations and three sensing groups: group 1 consists of nodes 2, g, and i;
F2:3 group 2 consists of nodes 3, f − 1, and f; group 3 consists of nodes
F2:4 f þ 1, h, and N − 1; the corresponding offline DSN data with K total
F2:5 samples contains two spatial continuities, one at k ¼ J þ 1 and another
F2:6 at k ¼ Lþ 1
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258 Nomenclature tables are provided at the end of the paper for
259 reference to model entities. Lastly, theoretically, the model orders
260 for each subsequent state-space model, p, are all equal to 2; how-
261 ever, since significantly higher model orders are commonly consid-
262 ered in system identification applications (Chang and Pakzad
263 2013), a general definition is presented when referring to vector
264 and matrix sizes.

265 Standard State-Space Model

266 This subsection presents the first state-space model under consid-
267 eration for DSN: the standard state-space model. In this framework,
268 the state vector xk, shown in Eq. (3), represents structural responses
269 at all N DOF as defined by s

xk ≡
�
ukðsÞ
u̇kðsÞ

�
ð3Þ

270 Also, given the full mode shape matrix Φ ¼ ΦhMiðsÞ, where Φ is
271 an N ×M matrix (inherently truncated to M ¼ N modes due
272 to mass discretization), submode shapes matrices Φi ¼ ΦhMiðsiÞ
273 describe modal ordinates for respective spatial subvectors,
274 e.g., ΦO ¼ ΦhMiðsOÞ is an NO ×M matrix. Eqs. (4) through (8)
275 provide discrete-time state-space model parameters

Ac ≡
�

0 I

−m̄−1k̄ −m̄−1c̄

�
ð4Þ

A ¼ expðAcΔtÞ ð5Þ

Bc ≡
�

0

−m̄−1Bf

�
ð6Þ

B ¼ A−1
c ðA − IÞBc ð7Þ

C≡ Ca½−m̄−1k̄ −m̄−1c̄ � ð8Þ

276 Once the parameters are defined, the second-order differential
277 equation is expressed in first-order form through the state Eq. (9)
278 and the observation Eq. (10) for DSN

xk ¼ Axk−1 þ Bηk−1 ð9Þ

yk ¼ ΦOΦ−1Cxk ð10Þ
279 Along the usual model parameters (Juang and Phan 2001), the
280 product ΦOΦ−1 is added to the observation equation. This term rep-
281 resents the regression of the responses at s on those at sO and is the
282 key to modeling the dynamics of one set of DOF while observing
283 another; this entity is henceforth called the mode shape regression
284 (MSR) term. More specifically, the acceleration responses ükðsÞ ¼
285 Cxk are first converted to modal coordinates through Φ−1, then
286 reverted to physical coordinates using ΦO, finally representing
287 yk ¼ ükðsOÞ, in other words, ükðsOÞ ¼ ΦOΦ−1ükðsÞ. In the case
288 that all DOF are observed, sO ¼ s, ΦOΦ−1 ¼ I, and the familiar
289 observation equation yk ¼ Cxk is obtained.
290 In review of the standard model, the state variable represents all
291 N DOF and the observations measure responses at NO DOF. Thus,
292 yk is an NO × 1 vector, xk is a pN × 1 vector, the state matrix A is
293 pN × pN, the observation matrix C is NO × pN, and the mode
294 shape regression matrix ΦOΦ−1 is NO × N (recall M ¼ N).
295 However, this model is unmanageably largewhenN is very large
296 and thus is unsuitable for DSN. In this framework, the number of

297DOF (state variables) is coupled with the sensing nodes; they are
298coincident. In other words, a high spatial resolution requires an
299overly complex dynamic model. Furthermore, the state variable size
300is very large (too large for system identification methods as one of
301the users of such models). For common networks, the required com-
302putational efforts for model-order-selection-based structural modal
303identification of fixed sensing networks are substantial (Chang and
304Pakzad 2012; Pakzad and Fenves 2009) and greatly sensitive to the
305size of the state variable (Matarazzo et al. 2015a). For a very largeN,
306this model is impractical for modal identification purposes. In con-
307sideration of an efficient model for DSN, it is illogical for all sensing
308nodes and states to coincide as required by this model; it is thus de-
309sirable to implement a model capable of distinguishing between
310these entities.

311Modal State-Space Model

312This subsection presents the second state-space model under
313consideration for DSN: the modal state-space model. In this
314approach, the observations represent the same entities as before,
315i.e., yk ¼ ükðsOÞ; however, the states, provided by Eq. (11), re-
316present modal responses

zk ≡
�
qh1ik : : : qhMi

k q̇h1ik : : : q̇hMi
k

�T ð11Þ

317The sampled modal responses are defined for all time steps k ¼
3181; 2; : : : ;K and all modes m ¼ 1; 2; : : : ;M, where qhmi

k is the
319sampled modal displacement for mode m at time step k; q̇hmi

k is
320the sampled modal velocity for mode m at time step k; and q̈hmi

k
321is the sampled modal acceleration for mode m at time step k.
322Along this new state variable, the remaining state terms are
323defined for modal space using M modal equations of motion
324(see Chapter 12 of Chopra 2007 for details). The modal mass ma-
325trix, modal stiffness matrix, modal damping matrix, and modal in-
326puts in Eqs. (12) through (15) are found using modal superposition
327and the modal equations of motion

M̄ ≡ ΦTm̄Φ ð12Þ

K̄ ≡ ΦT k̄Φ ð13Þ

C̄≡ ΦT c̄Φ ð14Þ

υk ≡ ΦTηk ð15Þ

328The full mode shape matrix and the submode shape matrix are
329identical to those in the standard state-space model: Φ ¼ ΦhMiðsÞ is
330an N ×M matrix and ΦO ¼ ΦhMiðsOÞ is an NO ×M matrix. The
331modal state-space model parameters provided in Eqs. (16) through
332(20) are analogous to the physical model counterparts from Eqs. (4)
333through (8)

AhMi
c ≡

�
0 I

−M̄−1K̄ −M̄−1C̄

�
ð16Þ

AhMi ¼ expðAhMi
c ΔtÞ ð17Þ

BhMi
c ≡

�
0

−M̄−1Bf

�
ð18Þ

BhMi ¼ ðAhMi
c Þ−1ðAhMi − IÞBhMi

c ð19Þ
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ChMi ≡ ChMi
a ½−M̄−1K̄ −M̄−1C̄ � ð20Þ

334 Finally, note phmi
k is the sampled modal input for modem at time

335 step k

υk ≡ ½ ph1ik : : : phMi
k

�T ð21Þ
336 The M second-order differential equations representing the mo-
337 dal equations of motion are expressed in first-order form through
338 the modal state Eq. (22) and a physical-modal observation Eq. (23)
339 for DSN

zk ¼ AhMizk−1 þ BhMiυk−1 ð22Þ

yk ¼ ΦOChMizk ð23Þ

340 The wording physical-modal is intended to acknowledge that
341 observations and states are in different coordinate systems, physical
342 and modal, respectively. In this model, the observation matrix
343 represents modal coordinates; thus, mode shape regression, i.e., pre-
344 multiplication by Φ−1, is no longer necessary. In Eq. (23), modal
345 state responses are mapped to physical measurements through the
346 modal observation matrix ChMi and observation submode shape
347 matrix ΦO. With this framework, the observation subvector sO and
348 corresponding submode shape matrix ΦO account for variations in
349 sensor configurations; all other model parameters are preserved.
350 In review of the modal model, the state variable represents allM
351 modal responses and the observations measure physical responses
352 atNO DOF. Thus, yk is anNO × 1 vector, zk is a pM × 1 vector, the
353 state matrix AhMi is pM × pM, the observation matrix ChMi is
354 M × pM, and the submode shape matrix for the observations
355 ΦO is NO ×M. Now if M ¼ N, the model parameters are as large
356 as before, in which case, the modal model offers no evident im-
357 provement over the standard model. However, the number of sens-
358 ing nodes is no longer coupled with the state variable; thus, one
359 issue with the previous model has been resolved. Furthermore,
360 if the modes are truncated so that M is considerably smaller than
361 N, for example,M ¼ NO (noteNO ≤ M ≤ N), then, the advantages
362 of this model become quite apparent. The number of modal re-
363 sponses included dictates the size of this modal model, whereas
364 the size of the standard model is defined by the total number of
365 sensing nodes. Moreover, the practice of modal truncation, i.e., the
366 selection ofM, is a familiar decision in structural dynamics for sys-
367 tems with large DOF and the assumption leads clear theoretical
368 consequences [see section 19.7 in Chopra (2007)].
369 With the state variable decoupled from the model DOF, the state
370 size is independent of the total number of sensing nodes and the
371 model complexity is reduced from pN in the standard model to
372 pM in this modal model. There are three main benefits of this re-
373 duction: a significantly smaller model, model complexity is user
374 selected through M, and the significance of this selection is intui-
375 tive as it is equivalent to modal truncation.
376 In conclusion, the modal state-space model is an attractive
377 choice for modeling structural systems using DSN data. However,
378 the model contains the following two pitfalls:
379 1. The states represent modal responses, while the observations
380 are in physical coordinates. In system identification, it is
381 counterintuitive to decompose the measured signal into modal
382 components without knowledge of the modal properties of the
383 structural system, i.e., prior to identification. Moreover, assum-
384 ing zk, AhMi, and ChMi are available, a coordinate transformation
385 would be required to extract corresponding spatial information
386 in the physical space. In short, with a modal state variable,
387 physical mode shapes are not available directly after model
388 identification.

3892. The submode shape matrix for the observations ΦO is a function
390of the time step since the locations of the observations sO vary
391over time, i.e., O ¼ OðkÞ. This feature yields a linear parameter
392varying (LPV) state-space model, complicating system identifi-
393cation procedures.
394The following subsection presents a truncated physical model
395(TPM), which maintains the benefits of the modal state-space
396model and addresses the aforementioned challenges.

397Truncated Physical Model

398Previous state-space approaches in this paper have adapted existing
399models to include DSN data as observations, primarily mapping
400states to measured values using the submode shape for the obser-
401vations. This section presents a novel state-space technique for
402DSN data: the truncated physical model (TPM). The TPM assumes
403the modal state-space model (from the previous section) was the
404result of a coordinate transformation T, which mapped modal states
405z to truncated physical states x∗ via x∗ ¼ Tz. Motivated from the
406challenges of implementing the modal state-space model for DSN,
407the goal of the TPM is to transform the modal matrices so that the
408state variable represents responses in physical (not modal) coordi-
409nates. It will be shown that, after this transformation, a truncated
410modal space yields a reduced (truncated) physical space for the
411states while the sensing nodes are unaffected. The benefits of modal
412truncation are mapped into a reduced, but not restricted, physical
413state representation of the dynamic system. The assumed transfor-
414mation exclusively activates Nα user-selected DOF, specified by
415sα ⊂ s and sα ≠ s (otherwise, the benefits of this transformation
416are lost), with Φα ¼ ΦhMiðsαÞ, where Φα is an Nα ×M matrix.
417The locations specified by sα are hereafter named virtual probing
418locations (VPL). It will be shown that the states are the responses at
419these VPL.
420For simplicity and minimum model size, it is assumed that the
421number of observations in the DSN data matrix, the number of mo-
422dal responses included in the dynamic system, and the number of
423VPL are all equal, i.e., NO ¼ M ¼ Nα; note the minimum value for
424M is selected. The pNα × pM transformation matrix T is defined in
425Eq. (24) with square, block diagonal entries Φα

T ≡
�
Φα 0

0 Φα

�
ð24Þ

426The transformation matrix relates TPM parameters (denoted
427by superscript *) to modal model parameters [denoted by super-
428script hMi]

AhMi ≡ T−1A∗T ð25Þ

BhMi ≡ T−1B∗ ð26Þ

ChMi ≡ C∗T ð27Þ
429The preceding equations are rearranged (back-transformed) to
430define TPM parameters in terms of modal model parameters

A∗ ¼ TAhMiT−1 ð28Þ

B∗ ¼ TBhMi ð29Þ

C∗ ¼ ChMiT−1 ð30Þ
431The back-transformation results in physical responses at
432sα, while the observations are unaltered. In other words, unlike
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433 the modal model, the TPM is exclusively defined in physical
434 coordinates. Note sα ≠ s and sα contains significantly fewer
435 elements than s, i.e., Nα ≪ N; otherwise, the benefits of this
436 back-transformation would be lost. The pNα × 1 TPM state vector
437 is defined by the spatial vector sα; therefore, the responses at the
438 VPL dictate the dynamic model

x∗
k ≡

�
ukðsαÞ
u̇kðsαÞ

�
ð31Þ

439 It is important to reiterate that this reduction in physical space
440 is not restrictive. In other words, the VPL can represent any user-
441 selected DOF subset defined by sα ⊂ s and T accordingly, a trait
442 unique to the TPM

x∗
k ¼ A∗x∗

k−1 þ B∗υk−1 ð32Þ

yk ¼ ΩΦαC∗x∗
k ð33Þ

443 In Eq. (34), an MSR term is represented by Ω, an NO ×M
444 matrix

Ω≡ ΦOΦ−1
α ð34Þ

445 Similar to the MSR term found in Eq. (11) for the standard state-
446 space model, the term in Eq. (34) represents the regression of the
447 ordinates at the VPL responses (defined by sα) on to those at
448 the observations (defined by sO). In other words, Ω ¼ ΦOΦ−1

α maps
449 the VPL responses ükðsαÞ ¼ ΦαC∗x∗

k to the observations ükðsOÞ,
450 i.e., ükðsOÞ ¼ ΨükðsαÞ. Unlike the modal model, the TPM has a
451 physical state variable, so that when the state matrix and the ob-
452 servation matrix are available, the corresponding mode shapes
453 cover VPL nodes. For example, in system identification, physical
454 mode shapes can be computed directly from these model param-
455 eters: the eigendecomposition of A∗ yields natural frequencies
456 and damping ratios, and ΦαC∗ provides submode shapes at VPL.
457 In review of the TPM, the size and locations (VPL) of the
458 truncated physical states are user defined, through Nα and sα,
459 respectively. Also, truncated physical states are exact truncated
460 physical responses at the VPL. In general, the observation vector
461 yk is NO × 1, the truncated physical state vector x∗

k is pNα × 1, the
462 truncated physical state matrix A∗ is pNα × pNα, the truncated
463 physical observation matrix C∗ is M × pNα, the submode shape
464 term for VPL Φα is Nα ×M, and the MSR term Ω is NO ×M. With
465 the assumption for minimummodel sizeNα ¼ NO ¼ M, the model
466 complexity is reduced significantly and becomes directly related to
467 the number of observations in the DSN data matrix. More specifi-
468 cally, x∗

k is pNO × 1, A∗ is pNO × pNO, C∗ is NO × pNO, Φα is
469 NO × NO, and Ω is NO × NO.
470 In conclusion, the TPM establishes an intuitive relationship
471 between the observation size of the DSN data matrix and the
472 complexity of the underlying dynamic states. More importantly,

473model complexity and state DOF are independent of the full set
474of sensing nodes. This is a vast improvement on the coupled nature
475between states and sensing nodes observed in the standard state-
476space model. Additionally, with physical, user-defined VPL states,
477the interpretation of identified modal properties is simplified.
478As with other state-space models (Matarazzo and Pakzad 2015a;
479Matarazzo et al. 2015a; Peeters and De Roeck 1999), an additive
480noise term can be included in the observation equation of the TPM.
481Eq. (33) can be modified to yk ¼ ΩΦαC∗x∗

k þ wk, to properly, and
482simply, include sensor noise wk, which is independent of the true
483structural response. There are no particular restrictions on sampling
484frequency required by the TPM or DSN data other than consider-
485ation of the Nyquist frequency (Oppenheim et al. 1999) to prevent
486temporal aliasing.
487It is important to mention that Ω is a time-variant parameter
488because it is a function of ΦO. The merit of Ω is that it can be ap-
489proximated efficiently by a basis function for spatial reconstruction,
490without knowledge of the true structural mode shapes. With this
491approximation, the challenges of system identification of a LPV
492state-space model (as mentioned at the end of the previous section)
493can be eliminated. This topic is further discussed in the following
494section.

495Mode Shape Regression Using Basis Functions

496In this section, the role of basis functions for the use in the TPM
497is discussed. It is shown that the MSR term Ω [introduced in
498Eq. (34)] can be approximated by the use of basis functions. Fur-
499thermore, accurate estimates of DSN data in time and frequency
500domain become available in the TPM through a simple technique,
501without additional use of true structural mode shapes. Moheimani
502et al. (2003) presented linear reconstruction of structural mode
503shapes using Shannon sampling theorem for discrete signals,
504henceforth WKS (Whitaker, Kotelnikov, Shannon) theory. Portions
505of this theorem and its extensions can be attributed to Whittaker
506(1915, 1928), Kotelnikov (1933), or Shannon (1998); in this paper,
507the term WKS is adopted from Jerri (1977), which refers to the
508authors’ collective contributions. The application of WKS is revis-
509ited using nomenclature familiar to the previous section; then, the
510relation is adapted for use in the truncated physical state-
511space model.
512The approach begins with an ideal, regular sampling case: first
513assume sensing nodes are defined by s ¼ ½ s1 s2 : : : sN �T.
514Eq. (35) below reformulates Eq. 7.39 from Moheimani et al.
515(2003) for approximation of the N ×M full mode shape Φ ¼
516ΦhMiðsÞ using an Nχ ×M subset mode shape Φχ ¼ ΦhMiðsχÞ,
517where sχ ¼ ½ sχ1

sχ2
: : : sχβ �T is uniformly spaced on the

518structure at Δsχ and sχ ⊂ s

Φ̂ ¼
�
sinc

�
1

Δsχ
ðs − sχ1

Þ
�

sinc

�
1

Δsχ
ðs − sχ2

Þ
�

: : : sinc

�
1

Δsχ
ðs − sNχ

Þ
� �

Φχ ð35Þ

519 Note the estimate Φ̂ is an N ×M matrix, which is exact at Nχ
520 subset locations, i.e., Φ̂ðsχÞ ¼ ΦðsχÞ ¼ Φχ, because sincð0Þ ¼ 1.
521 Mode shape ordinate approximations at remaining N − Nχ loca-
522 tions, i.e., Φ̂ðs ⊄ sχÞ, are interpolated through this reconstruction.
523 As in the case with temporal sampling, it is essential to anticipate
524 the highest expected frequency content of the wave when selecting

525a spatial sampling frequency. In the case of a simply supported
526beam with N uniformly spaced nodes and length L, in order to
527avoid spatial aliasing, sensing nodes must be spaced so that Δsχ <
528L=N. Additional details on the reconstruction accuracy and its
529corresponding error at sensing nodes, namely ε≡ kΦ̂ − Φk2,
530can be found in reconstruction literature (Moheimani et al. 2003;
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531 Jagerman and Fogel 1956; Jerri 1977; Stenger 1976; Whittaker
532 1915).
533 The next step will focus on the interpolated portions of the mode
534 shape estimates. Two subsets of sensing nodes and their corre-
535 sponding submode shapes will be defined, and then related using
536 the same aforementioned theory. Finally, the relation between the
537 submode shapes will be rearranged, to prove that the sinc basis
538 function approximates the MSR term in the TPM.
539 Consider WKS for the problem of estimating modal ordinates
540 at a different subset mode shape matrix, say Φδ, using Φχ. In other

541words, define a different subset of modal ordinates Φδ ¼ ΦhMiðsδÞ
542of equal size, i.e., Nδ ¼ Nχ, where sδ ¼ ½ sδ1 sδ2 : : : sNδ

�T
543and sδ ⊂ s. Additionally, assume no overlapping locations between
544these two sensing node subsets, i.e., their union is null sχ ∩ sδ ¼ ∅
545(this is to demonstrate maximum utility; it is not a requirement). The
546estimation of Φδ is given in Eq. (36), where the WKS reconstruc-
547tion has been adjusted to exclusively represent interpolation.
548More specifically, the following equation defines linear regression
549of one set of modal ordinates onto another where the entries of
550the basis function matrix Ωsinc are the regression coefficients

Φ̂δ ¼
�
sinc

�
1

Δsχ
ðsδ − sχ1

Þ
�

sinc

�
1

Δsχ
ðsδ − sχ2

Þ
�

: : : sinc

�
1

Δsχ
ðsδ − sNχ

Þ
��

Φχ

Φ̂δ ¼ ΩsincΦχ ð36Þ

551 Both sides of the equation above are postmultiplied by Φ−1
χ

552 resulting in Eq. (37)

Ωsinc ¼ Φ̂δΦ−1
χ ð37Þ

553 Eq. (37) has a great significance in the context of the TPM.
554 The left-hand side of Eq. (37) is the sinc basis evaluated at the
555 lags between locations sδ and sχ; the right-hand side of Eq. (37)
556 is an approximation for the MSR term that relates ükðsδÞ
557 and ükðsχÞ to each other. In other words, the sinc basis function
558 approximates the MSR term. Furthermore, with Φδ ¼ ΦO and
559 Φχ ¼ Φα, through the proper selections of sδ and sχ, the sinc basis
560 matrix is an estimator for Ω [found in the TPM, Eq. (34)].
561 Sinc is not the only basis capable of estimating the MSR term.
562 As discussed in Butzer et al. (1986), Moheimani et al. (2003),
563 and Unser (1999), B-splines are a computationally efficient
564 replacement for a sinc basis and carry useful curvature and deriva-
565 tive properties. The substitution in Eq. (38) provides an estimate
566 for Ω, which is, in general, less accurate than Ωsinc; however,
567 B-splines provide the “best performance for the least complexity”
568 (Unser 1999)

Ωspline ¼ ½βnðsδ − sχ1
Þ βnðsδ − sχ2

Þ : : : βnðsδ − sNχ
Þ �
ð38Þ

569 The variable complexity and performance of B-splines is char-
570 acterized by the selection of degree n. In many applications, the
571 cubic spline, n ¼ 3, is a popular choice due to its minimum cur-
572 vature property, and in fact, as the spline degree goes to infinity,
573 the cardinal spline filter approaches the ideal sinc filter (Aldroubi
574 et al. 1992).
575 Most importantly, the requirement of uniformly spaced sensing
576 nodes is not necessarily a restriction since in the TPM, the VPL
577 are arbitrary; they are chosen by the user out of all sensing nodes.
578 Therefore, the user can simply program VPL to be uniformly
579 spaced nodes and achieve optimal results (maximum accuracy of
580 the MSR approximation). Also note, for irregular or nonperiodic
581 VPL, the WKS relations presented in this section remain appli-
582 cable; however, the corresponding error has a different form
583 (Beutler 1961, 1966). It is recommended that the VPL are selected
584 to be uniformly spaced.

585Processing Data from Novel Sensing Techniques

586This section presents novel sensing applications of the modal
587model and the truncated physical model (TPM). As discussed in
588previously, the TPM computes dynamic sensor network (DSN) data
589efficiently at a model complexity, which depends on the modal
590truncation—not the quantity of sensing nodes. The implementation
591of a minimum complexity TPM to compute DSN data is essential
592to the eventual practice of such sensing systems. The following
593applications have three primary objectives:
5941. Demonstrate that the proposed TPM provides responses identi-
595cal to the theory. In these studies, the theoretical solution is
596represented by the modal state-space model, which provides the
597exact structural responses truncated to M modes.
5982. Quantify the accuracy of the mode shape regression (MSR) term
599approximations computed using sinc and spline basis functions.
6003. Provide two examples of novel sensing techniques that can be
601modeled exactly and efficiently (at the minimum model size)
602using DSN data and the TPM.
603In both applications, the SHM of a flexible beam structure using
6045,000 sensing nodes is considered. The high-resolution mobile
605sensing case exemplifies online DSN data, while the BIGDATA
606case demonstrates offline DSN data. In each case, the spatial
607discontinuities in the DSN data matrix have a different source.
608In high-resolution sensing, the discontinuities are due to the physi-
609cal movement of the sensors, while in BIGDATA, they are a result
610of user-selected sensor scheduling, after data collection. Moreover,
611the specific offline DSN application extracted from the raw data
612represents only a single hypothetical data set out of the voluminous
613possibilities available with BIGDATA.

614High-Resolution Mobile Sensing Application

615In this section, the response of a flexible simple beam is measured
616by 19 mobile sensors, which scan 5,000 sensing nodes. Four mod-
617els are considered to simulate the resulting online DSN data set:
618modal model, TPM, TPM with sinc bases, and TPM with cubic
619splines. The modal and TPM are exact and theoretically equivalent,
620while the TPM with a basis function is approximate.
621In this application, a 5,000-DOF beam is subjected to a vertical
622white noise ground motion at the supports with a frequency cut off
623at 30 Hz. The natural vibration properties of the beam are provided
624in Table 1, with natural frequencies ranging from 0.27 to 98.19 Hz.
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625Fig. 3 depicts the mobile sensing network for this application,
626which samples at a rate of 200 Hz. The DSN is a group of 19 neigh-
627boring sensors that scan the structural response by shifting together,
628after each sample, in increments of one sensing node. At sample
629k ¼ 1, the sensor group measures responses at sensing nodes 1
630through 19; at sample k ¼ 2, they observe sensing nodes 2 through
63120; finally, at sample k ¼ K ¼ 4,982, they observe sensing nodes
6324,982 through 5,000. The resulting online DSN data matrix is
63319 × 4,982 and includes information from all 5,000 sensing nodes.
634The exact modal responses are calculated for the first 19 modes
635(M ¼ 19) using a modal state-space model. With this information,
636the exact truncated responses can be computed at all DOF through
637the use of a spatially dense mode shape vector. However, it is only
638necessary to compute responses at locations and times where the
639DSN is scheduled to cover. As presented earlier, the submode shape
640term is added to the modal state-space model to calculate the ob-
641servations of an online DSN. The resulting DSN data are the exact
642truncated measurements.
643Using the same loading, the TPM is constructed in accordance
644with its introductory section with 19 VPL selected uniformly across
645the beam; thus, for the minimum model size, 19 structural modes
646were included. The modal model computed DSN data directly from
647modal responses of the state variable. The TPM computes DSN
648data (observations) from the truncated physical states, the exact
649truncated physical responses at VPL DOF.

650Mobile Sensing Results

651In Fig. 4, the responses at mobile sensors 1, 10, and 19 are com-
652pared over a selected range of samples. The individual responses of
653the moving sensors are redundant as the range of sensing nodes
654covered by the group is quite small, covering only 0.38% of the
655beam at each sample. The DSN data from the modal and TPM
656are nearly identical, as they are theoretically equivalent; any differ-
657ences are the result of computational error, predominantly, the ma-
658trix inversion required in the TPM by Ω ¼ ΦOΦ−1

α . As expected,
659the computational error for the mobile sensing DSN data (over
66094,000 entries) is small, with a mean squared error (MSE) equal
661to 16.54 × 10−5.

Table 1. First 19 Natural Vibration Properties of 5,000-DOF Beam

T1:1 Mode Frequency (Hz) Damping (%)

T1:2 1 0.273 0.027
T1:3 2 1.09 0.108
T1:4 3 2.45 0.244
T1:5 4 4.35 0.434
T1:6 5 6.80 0.678
T1:7 6 9.79 0.977
T1:8 7 13.33 1.33
T1:9 8 17.41 1.74

T1:10 9 22.03 2.20
T1:11 10 27.20 2.71
T1:12 11 32.91 3.28
T1:13 12 39.17 3.91
T1:14 13 45.97 4.58
T1:15 14 53.31 5.32
T1:16 15 61.20 6.10
T1:17 16 69.63 6.94
T1:18 17 78.60 7.84
T1:19 18 88.12 8.79
T1:20 19 98.19 9.79

F3:1 Fig. 3. Positions of mobile sensors at selected samples in high-
F3:2 resolution mobile sensing application; 19 sensors scan 5,000 sensing
F3:3 nodes as a group, shifting rightward to the next node after each sample
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F4:1 Fig. 4. Comparison of data from modal, TPM, and TPMwith basis approximations for samples 900 through 1,100 for mobile: (a) sensor 1; (b) sensor
F4:2 10; (c) sensor 19
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662 Fig. 4 also compares measurements from mobile sensors 1, 10,
663 and 19, computed by the TPM with sinc and cubic spline bases.
664 The overall behavior of the mobile sensor data is captured well
665 by both approximations. As quantified in Table 2, the sinc function
666 outperforms the cubic spline in accuracy by an order of magnitude,
667 with MSE equal to 18.80 × 10−3 versus 41.16 × 10−2.
668 Fig. 5 displays the power spectral density (PSD) estimate, com-
669 puted using the average of Welch’s method over all 19 sensors. The
670 data from the modal model and TPM contain nearly identical PSD
671 estimates with MSE equal to 60.21 × 10−9. Fig. 5 also provides the
672 PSD estimate for the TPM data with those obtained using sinc and
673 cubic spline basis approximations. The sinc PSD is coincident with
674 previous TPM PSD, while the spline has, overall, less power. In
675 Table 2, the approximation error is detailed, in which cubic spline
676 MSE is four orders of magnitude higher than the MSE from sinc.

677BIGDATA Processing Application

678In this subsection, the response of the simple beam, with modal
679properties given in Table 1, is measured using 5,000 sensors,
680one fixed at each sensing node. A harmonic load with frequency
6812.45 Hz is applied at sensing node 2,500, resulting in an ideal
682forced, third-mode structural response. With responses available
683at 5,000 locations, the processing options are overwhelming. In this
684application, only three observations are considered in the offline
685DSN data set. Therefore, for the minimum model order, three
686modes are included in the TPM.
687As pictured in Fig. 6, these observations are programmed to
688represent measurements in two specific sensing groups. Group 1
689includes sensing nodes 35, 1,670, and 3,335, and group 2 includes
690sensing nodes 840, 2,500, and 4,100. The offline DSN matrix
691consists of data from group 1 until the 500th sample, when the
692observations switch to group 2. Clearly, this selection only repre-
693sents one possible subset out of the many possibilities given in the
694BIGDATA population. Moreover, as pictured in Fig. 6, responses in
695group 1 are expected to be very small in magnitude due to the prox-
696imity of the nodes to zero-valued third-mode ordinates, and thus
697contain little information. When group 2 is selected, the responses
698are expected to have large values as the sensing nodes coincide with
699maximal third-mode ordinates.
700As in the high-resolution mobile sensing application, the modal
701model, TPM, TPMwith sinc bases, and TPM with cubic splines are
702considered to simulate the offline DSN data set. The DSN data are
703compared in time and frequency domain.

704BIGDATA Results

705In Fig. 7, a plot of each observation is provided along relevant
706node responses to display the observation switching scheme. For
707example, in Fig. 7(a), observation 1 is shown with nodes 35 and
708840 for all samples. During samples 1 through 499, sensing group
7091 is active, so that observation 1 represents samples at node 35.
710During samples 500 through 1,000, sensing group 2 is active and
711observation 1 represents samples at node 840. Figs. 7(b and c)
712show a parallel relationship with observation 2 and nodes 1,670 and
7132,500, as well as observation 3 and nodes 3,335 and 4,100.
714Fig. 8 provides the true DSN values computed using the modal
715and TPM. TPM approximations with sinc and cubic spline basis are
716also included. As mentioned previously, the modal and TPM data
717sets are theoretically exact, so the only differences are computa-
718tional as indicated with an MSE equal to 46.54 × 10−6 in Table 3.
719The sinc and B-spline approximations capture the overall behavior;
720however, the superior accuracy of sinc basis is evident. Quantita-
721tively, the MSE for the sinc approximation is two orders of mag-
722nitude lower than that of the cubic B-spline.
723In Fig. 9, the PSD estimates are plotted for all four models. Con-
724sistent with previous analyses, the overall behavior of the response
725is captured by all four models. The modal model, TPM, and TPM
726with sinc basis approximation are all in agreement, while there is
727overall considerably less power in the B-spline approximation.

Table 2. Comparison of Online DSN Data in Mobile Sensing Application

T2:1 Error type Sum of squares in time domain Time domain MSE Sum of squares of PSD PSD MSE

T2:2 Computational
P

k;so ðYmodal − YTPMÞ2 15.66 16.54 × 10−5 11.72 × 10−4 60.21 × 10−9

T2:3 Sinc basis
P

k;so ðYTPM − Ŷsinc
TPMÞ2 1,779.79 18.80 × 10−3 50.00 × 10−3 25.67 × 10−7

T2:4 Cubic B-spline
P

k;so
ðYTPM − Ŷspline

TPM Þ2 38,958.51 41.16 × 10−2 351.92 18.07 × 10−3

Note: Sum of squared errors and mean squared errors (MSE) are computed among the four DSN data sets: modal, TPM, TPMwith sinc, and TPMwith spline.
Time domain errors are computed directly from DSN data matrices while power spectral density (PSD) errors are computed from PSD estimates usingWelch’s
method. DSN data matrices are 19 × 4,982.
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F5:1 Fig. 5. Averaged PSD estimates of data from modal, TPM, and TPM
F5:2 with basis approximations computed via Welch’s method for high-
F5:3 resolution mobile sensing application

F6:1 Fig. 6. BIGDATA processing application considers the switching be-
F6:2 tween two groups; group 1 consists of sensing nodes 35, 1,670, and
F6:3 3,335 while group 2 covers nodes 840, 2,500, and 4,100; the third-
F6:4 mode shape of the structure is superimposed to demonstrate the ex-
F6:5 pected node responses to a third-mode harmonic excitation
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728 However, in this case, the computational PSD MSE is 28.87 ×
729 10−12 and the sinc approximation PSD MSE is 43.46 × 10−8,
730 two orders of magnitude lower than the B-spline PSD MSE.
731 The accuracy of the spline MSR approximation can be improved

732by including additional modes in the model. In the previous appli-
733cation where 19 modes were considered, there was little discrep-
734ancy between the TPM with a spline basis and the TPM with a sinc
735basis. Thus, when the number of modes included in the TPM is

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1
Observation 1 switches from node 35 to node 840

A
cc

el
.

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1
Observation 2 switches from node 1670 to node 2500

A
cc

el
.

Observation 2 Node 1670 Node 2500

Observation 1 Node 35 Node 840

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1
Observation 3 switches from node 3335 to node 4100

Sample, k

A
cc

el
.

Observation 3 Node 3335 Node 4100

A

B

C

F7:1 Fig. 7. Each observation of the offline DSN data matrix is plotted with relevant sensor node responses as scheduled in the BIGDATA application;
F7:2 group switching occurs at sample 500: (a) observation 1 with responses at nodes 35 and 840; as scheduled in the BIGDATA application, observation 1
F7:3 switches from sensing node 35 to 840; (b) observation 2 with responses at nodes 1,670 and 2,500; (c) observation 3 with responses at nodes 3,335
F7:4 and 4,100
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F8:1 Fig. 8. (a) Modeled BIGDATA offline DSN observation 1 computed using the modal model, TPM, and TPM with basis approximations; (b) the
F8:2 modeled BIGDATA offline DSN observation 2 computed using the modal model, TPM, and TPM with basis approximations; (c) modeled BIGDATA
F8:3 offline DSN observation 3 computed using the modal model, TPM, and TPM with basis approximations

Table 3. Comparison of Offline DSN Data in BIGDATA Application

T3:1 Error type Sum of squares in time domain Time domain MSE Sum of squares of PSD PSD MSE

T3:2 Computational
P

k;so ðYmodal − YTPMÞ2 13.96 × 10−2 46.54 × 10−6 11.17 × 10−9 28.87 × 10−12

T3:3 Sinc basis
P

k;so ðYTPM − Ŷsinc
TPMÞ2 1.61 53.81 × 10−5 16.82 × 10−5 43.46 × 10−8

T3:4 Cubic B-spline
P

k;so
ðYTPM − Ŷspline

TPM Þ2 61.50 20.50 × 10−3 38.84 × 10−4 10.04 × 10−6

Note: Sum of squared errors and mean squared errors (MSE) are computed among the four DSN data sets: modal, TPM, TPMwith sinc, and TPMwith spline.
Time domain errors are computed directly from DSN data matrices while power spectral density (PSD) errors are computed from PSD estimates usingWelch’s
method. DSN data matrices are 3 × 1,000.
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736 small or moderate, the sinc basis is recommended to approximate
737 the MSR term.
738 While this application utilized many sensors to capture a simple
739 response, it is clear that observation switching through offline DSN
740 provides a powerful technique for generating aggregate data sets
741 with dense structural information. For example, an optimal sensor
742 network strategy (Chang and Pakzad 2014; Guo et al. 2004;
743 Papadimitriou 2004) could be implemented to extract an optimal
744 (by some measure) offline DSN data matrix from an available fixed
745 sensor network, perhaps, a BIGDATA population. Moreover, in
746 general, the goal is to use this strategy to build smart DSN data
747 sets, which carry rich structural information in a compact size.

748 Conclusions

749 In this paper, dynamic sensor network (DSN) data sets were
750 proposed to efficiently store measurements from a very large
751 quantity of sensing nodes in a relatively small matrix. Note that
752 a physical DSN system is not required to obtain a DSN data ma-
753 trix. Spatial discontinuities in DSN data matrices enable a high
754 capacity for storing spatial information. In the section “Dynamic
755 Sensor Network Data” the concept of DSN was formally intro-
756 duced and the roles of sensors, sensing nodes, and observations
757 were defined. General types of DSN, such as online and offline,
758 were also established.
759 In the section “Exact State-Space Models for Dynamic Sensor
760 Networks” classical state-space models were modified to represent
761 DSN data sets and associated modeling challenges were identified.
762 Primarily, in the standard state-space model, the state variable
763 coincides with sensing nodes; thus, a dense spatial grid dictates
764 an overly complex dynamic model. The truncated physical model
765 (TPM) was proposed as a computationally efficient technique to
766 address these challenges. The TPM is theoretically equivalent to
767 a modal state-space model with DSN observations (presented ear-
768 lier in this paper) and establishes an intuitive relationship between
769 the observation size of the DSN data matrix and the complexity of
770 the underlying dynamic states. Additional benefits of the TPM in-
771 clude an unrestricted physical state variable, which represents user-
772 defined virtual probing locations (VPL); in other words, the user
773 may choose which sensing nodes define the state variable. This is a
774 vast improvement on the coupled nature between states and sensing
775 nodes seen in the standard state-space model.
776 In the section “Mode Shape Regression Using Basis Functions”
777 the approximation of the mode shape regression term, defined in

778Eq. (34) of the TPM, through basis functions is discussed. Using
779the Whitaker-Kotelnikov-Shannon (WKS) reconstruction theory,
780sinc or spline bases are implemented in the TPM to bypass addi-
781tional mode shape matrices in the observation equation. The result
782simplifies the subsequent system identification of TPM by elimi-
783nating the complex linear parameter varying (LPV) nature of the
784model, thus avoiding LPV-type identification algorithms.
785High-resolution mobile sensing and BIGDATA processing
786applications were considered in the section “Processing Data from
787Novel Sensing Techniques” to exemplify novel sensing explora-
788tions with DSN data. In high-resolution mobile sensing, informa-
789tion from the responses at 5,000 sensing nodes was measured by 19
790moving sensors and condensed into a 19 × 1 vector at each sample,
791and modeled with a 38 × 1 state variable. Note theoretically, in the
792standard state space model, the state variable would be restricted to
793a 10,000 × 1 vector. The BIGDATA processing application demon-
794strated the versatility in offline DSN data sets and the ability to
795process a smart subset. Given a very dense fixed sensor array
796and an enormous data matrix, offline DSN provide the ability to
797build an information-packed data matrix from user-selected sensor
798measurements. In the application, the second sensor group
799contained significantly more structural information than the first
800sensor group, exhibiting the utility in offline DSN for processing
801BIGDATA.
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809Notation

810The following symbols are used in this paper:
A 811= 812standard state matrix; size is pN × pN;
Ac 813= 814continuous-time state matrix of the standard

815state-space model; size is pN × pN;
AhMi 816= 817modal state matrix; size is pM × pM and M ≪ N;
AhMi
c 818= 819continuous-time state matrix of the modal state-space

820model; size is pM × pM and M ≪ N;
A∗ 821= 822TPM state matrix; size is pNα × pNα and

823Nα ¼ NO ¼ M;
B 824= 825standard state input matrix; size is pN × N;
Bc 826= 827continuous-time state matrix of the standard

828state-space model; size is pN × N;
BhMi 829= 830modal state input matrix; size is pM ×M andM ≪ N;
BhMi
c 831= 832continuous-time state matrix of the modal state-space

833model; size is pM ×M and M ≪ N;
B∗ 834= 835TPM state input matrix; size is pNα × Nα and

836Nα ¼ NO ¼ M;
Bf 837= 838scaling matrix for the applied forces in the

839continuous-time equation of motion; size is N × N
C̄ 840= 841modal damping matrix for M modes; size is M ×M

842and M ≪ N;
C 843= 844standard observation matrix; size is NO × pN;
Ca 845= 846measurement conversion matrix, as described in

847section 7.2.1 of Juang and Phan 2001; size is
848NO × NO

ChMi 849= 850modal observation matrix; size is M × pM and
851M ≪ N;
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ChMi
a852 =853 modal measurement conversion matrix; size is

854 M ×M;
C∗855 =856 TPM observation matrix; size is M × pNα and

857 Nα ¼ NO ¼ M;
c̄858 =859 structural damping matrix for N DOF; size is N × N;
K860 =861 number of time samples (number of rows in DSN data

862 matrix); scalar;
K̄863 =864 modal stiffness matrix for M modes; size is M ×M

865 and M ≪ N;
k̄866 =867 structural stiffness matrix for N DOF; size is N × N;
k868 =869 time step index;
M870 =871 number of modes included in analysis; scalar;
M̄872 =873 modal mass matrix for M modes; size is M ×M and

874 M ≪ N;
m̄875 =876 structural mass matrix for N DOF; size is N × N;
m877 =878 mode index;
N879 =880 total number of sensing nodes in model (DOF); scalar;

NO881 =882 observation size (number of columns in DSN data
883 matrix); scalar;

Nmc884 =885 number of sensors (measurement channels) in data set;
886 scalar;

n887 =888 degree of B-spline Ωspline; scalar;
Nχ889 =890 total number of sensing nodes in subset χ;
Nα891 =892 total number of VPL, i.e., sensing nodes in subset α;
Nδ893 =894 total number of sensing nodes in subset δ;
O895 =896 spatial subset corresponding to observations; when the

897 observations are DSN data, this is a time-variant
898 function, i.e., O ¼ OðkÞ;

p899 =900 state-space model order (theoretically, p ¼ 2); scalar;

phmi
k

901 =902 modal input for mode m at time step k;

qhmi
k

903 =904 modal displacement for mode m at time step k;

q̇hmi
k

905 =906 modal velocity for mode m at time step k;

q̈hmi
k

907 =908 modal acceleration for mode m at time step k;

SO909 =910 sensor-position matrix for observations; size is
911 K × NO

s912 =913 vector describing locations of all sensing nodes; size is
914 N × 1;

Δsi915 =916 spacing for a uniform sensing node subset si;
si917 =918 vector describing locations of sensing nodes in subset

919 i; size is Ni × 1;
T920 =921 coordinate transformation from modal to truncated

922 physical coordinates; size is pNα × pM and
923 Nα ¼ NO ¼ M;

ukðsiÞ924 =925 vector of displacement responses at si and time step k;
u̇kðsiÞ926 =927 vector of velocity responses at si and time step k;
ükðsiÞ928 =929 vector of acceleration responses at si and time step k;

wk930 =931 sensor noise at time step k;
xk932 =933 standard state vector at time step k; size is pN × 1;
x�
k934 =935 TPM state vector at time step k; size is pNα × 1 and

936 Nα ¼ NO ¼ M;
yk937 =938 observation vector at time-step k (transposed row of

939 DSN data); size is NO × 1;
zk940 =941 modal state vector at time-step k; size is pM × 1 and

942 M ≪ N;
α943 =944 spatial subset corresponding to VPL; individually

945 indexed as α1; : : : ;Nα;
βnð Þ946 =947 B-spline function with degree n;

χ948 =949 uniformly spaced sensing node subset; individually
950 indexed as χ1; : : : ;Nχ;

δ951 =952 general sensing node subset; individually indexed as
953 δ1; : : : ;Nδ;

Φ954 =955 mode shape matrix for M modes at all sensing nodes;
956 also known as ΦhMiðsÞ; size is N ×M;

Δt 957= 958sampling period in seconds;
Φi 959= 960mode shape matrix for M modes at sensing nodes in

961subset i; also known as ΦhMiðsiÞ; size is Ni ×M;
ηk 962= 963forcing function at time-step k; size is N × 1;
υk 964= 965modal input at time-step k; size isM × 1 andM ≪ N;
Ω 966= 967TPM mode shape regression term; size is NO ×M and

968M ¼ NO;
Ωsinc 969= 970sinc basis estimate for mode shape regression term;

971size is NO ×M and M ¼ NO; and
Ωspline 972= 973B-spline estimate of degree n for mode shape

974regression term; size is NO ×M and M ¼ NO.
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