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Abstract. Duamage detection is a challenging, complex, and at the same time very important research topic
in ¢ivil engincering, Identifying the location and severity of damage in a structure, as well as the global
effects of local damage on the performance of the structure are fundamental clements of damage detection
algorithins, Local damage detection is essential for structural health monitoring since local damages can
propagate and become detrimental to the functionality of the entire structure, Existing studics present several
methods which utilize sensor data, and track global changes in the structure. The challenging issue for these
methods is to be sensiive enough in identifying local damage. Autoregressive madels with exogenous terms
(ARX) arc a popular class of modeling approaches which are the basis for a large group of local damage
detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm
(IDDA), which is developed for identification of local damage based on regression of the vibration
responses, The formulation of the algorithm and the post-processing statistical framework is presented and
its performance is validated through implementation on an experimental beam-column connection which is
instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm,
two different sensor networks with different sensing qualities are utilized and the results are compared.
Based on the comparison of the results, the effect of sensor noise on the performance of the proposed
algorithm is observed and discussed in this paper.
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1. Introduction

Structural health monitoring (SHM) plays an integral role in maintaining the integrity of
important civil, mechanical, and acrospace structural sysiems. Structures experience a number of
loading scenarios on a daily basis ranging from typical ambient excitations to more extreme wind
and carthquake loads. All these loading scenarios may have damaging effects on the structures and,
whether the resulting damages are visible immediately or appear more gradually in time, it is
important to be able to detect them before they propagate and become detrimental to the
functionality of the entire structure and its surroundings. With renewed interest in the deteriorating
state of the nation’s infrastructure, the need for effective, efficient, and affordable structural health
monitoring approaches and maintenance management systems is becoming more and more
apparent. A promising approach for monitoring and maintenance management is local damage
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detection. Applying this approach helps reduce the cost of repairs by identifying the exact parts of
structures that need to be repaired, instead of conservatively retrofitting the entire structure,
Additionally, continuous or semi-continuous monitoring of these structures over time will help
ensure that they do not fall to serious states of disrepair in the future, which will save on the cost
of maintenance in the long term.

| - Segie e tradRional pon-jestroctive evaluation (NDE) techniques, listed in ASM Handbook
(Anon. 1992) include but are noi limited to visual inspection, liquid penctrant (Dcutsch 1979),
eddy currents (Banks er al. 2002, Ziberstein er al. 2003), ultrasonic waves (Mallet et af. 2004),
acoustic emission, and infrared thermography (Trimm 2003, Ball and Almond 1998), While these
methods can be useful in eertain citcumstances, their success is dependent on a prior knowledge of
potential damage location (Docbling er a/. 1998). Also, for application of these methods, it is
necessary to have direct access to the location of damage, which may be a difficult task, especially
after an event such as an earthquake. Furthermore, NDE techniques are costly and labor-intensive,

Advancements in sensing technology have allowed for the development of new SHM methods
that can be applied on a temporary or semi-permanent basis for continual maonitoring of structurcs
(Lynch and Loh 2006, Farrar ef a/. 2005). One example of improvements in sensing technology is
application of wireless sensor networks which have made instrumentation of sensing technigues
more affordable and with minimal labor demand (Lynch er of. 2004, Pakzad er af. 2008, Jang et al,
2010, Gangone ef af. 2011, Dorvash er al. 2012)., An application which benefits from
advancements of sensing and instrumentation technologies is vibration-based SHM which is
commonly used to extract the dynamic characteristics of the structure from its response {Whelan
and Janoyan 2009, Cho er af, 2010, Kim e al, 2010, Yu ef /. 2010, Jang et af. 2010). Literature
presents numerous damage detection methods which rely on changes in identified dynamic
characteristics (e.g., natural frequencigs, mode shapes, and. modal damping) ta reveal changes in
the physical properties of the structure (&.g., mass and stiffhess), i.c., Sirdctural damage (Doebling
et @l. 1998, Alvandi and Cremona 2006). While the concept may be intuitive, application of
methods which rely on dynamic characteristics of the structure are not without obstacles. Modal
properties are indicators of the global state of the structure and are not sensitive enough to local
damages (Fartar er af. 1994, Chang et al. 2003). Therefore, these methods are mostly referred to as
global-based damage detections, Also, some SHM practices involving global-based damage
detection require knowledge of specific structural propertics, including mass, stiffness, or damping
ratio, for which it is often difficult to determine very accurate estimates (Koh er al. 1995, Morassi
and Rovere 1997, Sohn and Law 1997, Ratcliffe 1997). On the other hand, local damage detection
ts desired for structural health monitoring since local damages happen first and can propagate to
the entire structure.

Literature also presents some cffective local damage detection methods, such as damage
locating vector (DLV) method (Bernal 2002, Sim ef ol. 2008, Sim er al. 201 1) and
two-dimensional gapped smoothing method (Yoon ef al. 2005). While effective, these methods
have some requirememts. For example DLV method requires the knowledge of structural properties,
or requires homogeneity of the structural propertics as in the two-dimensional gapped smoothing
method. In addition, considering the current state of damage detection techniques in practice, more
research is still needed to improve existing algorithms, develop more effective techniques, and
make damage detection more practical and applicable in real-life monitoring scenarios. In this
regard, this paper presents an effective damage detection method, called Influence-based Damage
Detection Algorithm (IDDA) that uses vibration responses to achieve localized damage detection
without the need for exact knowledge of structural propertics, The method is based on regression
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of the vibration response and estimation of influence coefficients as damage indicators. (Dorvash
gl al. 2014, Shahidi er af. 2014, Yao and Pakzad 2014). While the algorithm is effective, it is also
very practical as it converts the shear amount of time-history data into condensed information
which enables detection of structural changes in the system.

In IDDA, influence coefficients, as defined in section 2, obtained from lincar regression
between every two node responses, are used as the index for determining and detecting the
occurrence of changes in the structural properties. The change point of time-variant influence
coefficients is also determined using a Bayesian statistical framework (Pakzad 2008). The
effectiveness of the proposed local damage detection method is demonstrated and verified through
simulated and experimental results. For the experimental implementation of the algorithm two
different networks of wired and wireless sensors are utilized and the results of the (wo sensor
networks with different noise characteristics arc evaluated and compared to observe the eflect of
gensor noise on the effectiveness of the algorithm.

2. Localized damage detection method

This algorithm bases its damage detecting capabilities on the premise that a strucfurg’s espanse.
changes when physical properties change, i.e., due to damage. The response of fhe Stractive i3
monitored at various locations via a spatially densc sensor network, and linear regression influence
cocflicients are extracted. When damage occurs, this linear relationship changes, which is reflected
in the influence coeflicients indicating the existence of damage. In addition 1o identifying that
damage has oceurred, considering the locations of sensors associated with changing coefficients
allows for localization of the damage as well. Furthermore, a statistical framework that utilizes
hypothesis testing can be implemented to determine whether damage cxists at a significant
confidence level.

2.1 Structural mode!

Damage detection methods can be classified in a number of ways. One common classification
is as identification of lincar or nonlinear damage. The definition of linecar damage is “the casc
when the initially linear-elastic structure remains linear-clastic after damage™ (Docbling et al.
1998). One advantage of studying a lincar damage state is that the linear equations of motion still
apply after damage. The method proposed in this work relies on this assumption of linearity before
and afler damage.

In order 1o demonstrate the linear-clastic assumptions of this method, a rigid beam-column joint
is considered, as shown in Fig. 1. The general frec body diagram has 9 unknowns (xi, v, £, X5 ¥ 75
Xy, 3, and #) assuming the joint to be restrained out-of-plane. The displacement at any point along
the structure, t,, can then be defined as a function of cach of these unknowns as follows

u,., = _/‘(X,x s}",’ [ r; L] x,,r‘ LV},‘ ,"J‘ ’ x,{ ’ _]”,{- ) r,{» ) { 1)

Because the joint represents a small portion of the structure, the member lengths create small
angles. Small angles correspond to negligible rotations reducing the number of degrees of freedom
(DOFs} to 6 independent translational DOFs (x,, 3., Xy, ¥ X, and 1), This number of DOFs can be
further reduced with the practical assumptions of inextensibility of the columin and beam members.



55 Siavash Dorvash, Shamim N, Pakzad and Elizaberh L. LaCrosse

A structure that is being monitored wili cxperience excitations of the ambient type for 3
majority of its useful life. Other more exireme excitations should be caonsidered as occurring
during the damaging event, in which casc the linearity assumption does not hold true, Because this
method involves the comparison of the structural state pre- and post-event, as opposed to during
the nonlincar damaging event, it is reasonable to consider the structure within a linear-clastic range.
Thus it is valid to consider Eq. (1) as a linear function.

Another impartant assumption for the application of this method is that the contributing mass at
the considered portion of the structure is negligible. This assumption allows local dynamic cffects
to be neglected such that the structure can be considered in its linear static state (Pakzad 2008 and
Chang and Pakzad 2014, Dorvash er af. 2014). Both found that because the stiffness of elements
forming the connection is much larger in comparison to their contributory mass when considering
a local portion of the structure, the effcct of the mass term becomes negligible and the dynamic
equation of motion can be reduced to a static relationship. However, it is important to note that this
assumption only applies to a local joint. Therefore, the linear relationship between nodes that are
within the same local joint and share a relatively stift portion of the structure should be assessed
for this algorithm. This may wanslate to smail clusters of dense sensor networks within a
larger-scale instrumentation network,

Considering this small portion of the structure (the beam-column connection) as a lincar static
system, any displacement response along the connection is a linear function of the response al
other locations and the relationship between the responses at any two locations, nodes 7 and j, can
be defined as

w,(ny= g, + a0+ e, (n) (2)

where, #(n) and w(n) are structure’s response at nodes i and j, respectively, and at Ume n, f,is
intercept value of regression between nodes i and j, oy is influence coefficient of regression
between nodes ; and /, and &; s the residual of the regression model.
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Fig. 1 Free body diagram of a rigid beam-column joint
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. 2.2 Mathematical model

The relationship between responses at different locations of a structure can be established using
an Auto Regressive with Exogenousterm (ARX) model as follow

P ] 4
E%)cr p."‘fu - p= L’I’q x(1 - g} + &ln) (3}
= e

where y and x arc output and input respectively, a's and A's are ARX coefficients, o{n) represents
the residuals, #1 is the time index, and /2 and ( are orders of the autoregressive and exogenous parts
of the ARX model, respectively, Based on this mathematical representation, the response at any
time step can be estimated having the past inputs and outputs and the current input.

In a linear structural system, cach output is a lincar function of input cxcitations and therefore,
the lincar relationship holds between different outputs and the ARX model can be written to
correlate outputs as follow

"'-}1 i ﬁ;i ‘4‘
l U b0 - Ph= Z 2‘!},‘,{)7{» = b+ ) (4)
pall =1 gl

where oulput at node j is related to current and previous outputs at nodes =1 {¢ k. This
equation cstablishes a relationship between one output and other outputs of the system. The
accuracy of this model depends on the selected model orders. While higher medel orders, in
general, deliver more details of the system and reduce the estimation bias, it is always desired to
keep the order at the minimum level to avoid over-parameterization. Considering the special case
of the lincar system with negligible mass (absence of inertia force),described in the previous
section, the corresponding ARX model can be developed by assuming P and 0 equal to zero

k

vl = Zﬁt}'f(n} + fy v ein) (5)

=14
which correlates the response at node j to current responscs at nodesi (= 1 to k). Addition of
intercept (/) into Eq. (5) is in order to account for the initial condition, since the effects of
previous time steps are removed from the cquation. Note that Bq. (5) represents a multi-variable
version of Eq. (2) (i.e.. considering k = 1 and b;/a; = @yj, the same cquation will be obtained).

2.3 Influence coefficients as damage indicators

IDDA takes responses of the structure and uses the assumed linear relationship between
different nodes, or sensor locations, with onc another. By caleulating influence coefficients, ayj,
between two nodes § and j. based on vibration-induced acceleration responsc data, the
correlation between these responses is determined according to Eq. (2).

The comparison of the resulting influence coefficients from the initial undamaged state with
that of the damaged state of the structure serves as a “damage indicator”™ when it yields a
significant change in the value of the coelfficients from state to state. More specifically, the
influence cocfficients exhibit a much more significant change when nodes i and j are located on
opposing sides of the damaged segment versus when they are on the same side. From linear
regression, this translates to a change in the value of ayfrom that of the original undamaged casc.



) Stavash Dorvash, Shamim N. Pakzad and Elizabeth L. LaCrosse

This charactenistic allows for the identification of the damage location by inspection of the pater,
in which influence coefficients exhibit significant changes.

2.4 Influence coefficient accuracy and estimation error

Once the coefficients are estimated, the accuracy of the data must be assessed and verified
before damage detection can be performed. This is done through consideration of both the
accuracy of the pair-wise cocfficients and the estimation crror. The product of influence
coefficients aj; and w;, yiclds the evaluation accuracy, Edy, of these coefficients, indicating
which node responses are linearly related to one another with the least amount of error, &, and thus
ar¢ more accurate predictors. An evaluation accuracy of 1.0 signifies a strong accuracy of
estimation, while a product of less than 1.0 corresponds to progressively higher values of noise
and nonlinear behavior of the physical structure.

The second parameter that is used for data verification is normalized estimation error, which is
calculated by

o]

oy

vy = (6)

a,
where jj is influence coeflicient between nodes ¢ and j and Ty is standard error of the
influence coeflicient estimates oy and can be estimated by the following equation

(7

o.w:j =

- R
(L}’i )

In Eq. (7), opis the standard error of the residuals, ¢ (the difference between the estimated and
true response).

Normalized estimation crror allows for a direct comparison of the amount of crror associated
with the estimation of cach influence coefficient as a damage mdicator. A low estimation error,
resulting from a low standard error of the estimated influence coefficient, will correspond to a
more accurate predictor, Once the accuracy and error have been asscssed for each cocfficient,
post-processing of the best influence coefficients can be performed for damage identification and
localization.

When the influence coefficients have been assessed for accuracy and error, the most reliable of
these are chosen for use in damage detection, As was previously discussed, changes in the physical
properties of the structure, such as loss of material stiffness or change in boundary conditions due
to damage, are reflected in changes in the behavior of the structure which can also be seen directly
in the influence coefficients: the lincar relationship between certain locations of the structure will
change to differing degrees depending on the location of the damage. The degree 1o which certain
coefficients change can indicate the location of the damage,

2.5 Statistical framework
In arder to determine what defines a “significant change” in the influence coefficients, a

statistical framewaork has been developed and applied. This framework is useful for processing
large volume of data as a structure is monitored over time. A Bayesian Statistic is used to
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determine the change point, the point at which the data indicates damage, at a 95% confidence
fevel (Chen and Gupta 2000). This statistical inference method tests the hypothesis that the mean
of the influence coefficients for each successive test is equal to the mean of the influence
coefficients from the initial undamaged state.

Hyag=a,==a,=a (8)

Eq. (8) defines null hypothesis, Hy, which assumes that the mean of the influence cocfTicients is
unchanged. This is tested against the one-sided alternative hypothesis, £,, where assumes that the
values of the influence coefficients beyond the change point, denoted as r, arc greater (or smaller)
than that of those prior to this point by a significant amount

H,a=a = =a <a,, 5 =a, (9)

where  represents the number of tests. The change point r, mean g, and standard error ¢ of the
influence cocflicient are all unknown. The statistic that is developed to test the aforementioned
hypothesis is a Bayesian statistic as follow

Sy =2 i@, ~d) (10)

whee #, the shange point, can bz gay point from 1 to N — 1. This Baycsian statistic, 0 fact,
assigns a weight (7) to changes that happen successively. In other words, as the offset in the mean
value of the influence coefficients persists, the difference between the mean and the baseline will
be accumulated by increasing factors. To test the significance of change and conclude the
alternative hypothesis, H,, with a certain confidence level, the following normalized ¢-statistic is
utilized

(= s (1)
o (NV-DEN-B

! 6

where & is the estimated crror of the influence coeflicient and the denominator of the equation is
the deviation of Sy. The test statistic £, has a t-distribution with N — 2 degrees of freedom (Sen
and Srivastava 1975). In this work, the hypotheses are tested at a 95% confidence level,

The physical significance of this hypothesis testing is such that the alternative hypothesis, H,,
indicates that the structure has incurred damage, while the null hypothesis, H,, means that there i3
not adequate evidence to establish that damage exists, These hypotheses are tested for those node
pairs that have been identified as significant damage indicators in the assessment and verification
stage of the method,

Influence-based damage detection algorithm with its different steps is outlined in Fig. 2. There
arc three phases in the implementation of this algorithin: (i) data retrieving and parameter
extraction, (i) validation and accuracy assessment, and (iii} post-processing and decision making.
The next sections of this paper will present the implementation of the algorithm on different
simulated and experimental models.
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Fig. 2 Methodology for damage detection

3. Simulated beam-column connaction

Since IDDA is developed for detection of local damages, the evaluations are presented based
on a beam-column connection (which is a local and also a critical structural clement) as a testbed
structural component. In this section, IDDA is validated using a simulated model of the
beam-column connection with 1.8 {m) length for column, 0.9 (m} length for beam, and cross
section of 25 (mm) square hollow tube with a wall thickness of 3 (mm) and modulus of inertia
equal to 23711 ( mm*). The {inite clement simulation is created using SAP2000. The beam-column
shown in Fig. 1 represents a localized portion of a larger structure, for example a single joint in a
larger building frame. A joint is a location in a structure that is prone to damage due to high stress
concentrations at the connections. The ability to determine not only the joint, but the location
within the joint where damage has occurred can lead to more efficient and cost-effective repair
solutions in a structure,

The column portion of the joint is fixed at both ¢nds while the beam cantilevers out from the
centerling of the column. Two simulation conditions are performed which include (1} an
undamaged baseline condition and (2) a damaged condition, characterized by a teduction in the
beam stiffness (15% reduction in stiffness). For cach of these models, acceleration response is
simulated at each of the 9 nodes for a white noise exciation applied at the free end of the beam in
the y-dircction. Measurement noise is accounted for by adding a Gaussian noise with a standard
deviation cqual to 5% of the root mean squarc (RMS) of each response signal, Fig. 3 shows the
schematic of the simulated beam-column connection and the acceleration response at two nodes
before and after the damage is applied.

The influence-based damage detection algorithm is then applied to the simulated data and the
paramcters are extracted. The relative changes in the influence cocfficients between the
undamaged and damaged states are shown for each pair-wise node relationship in Table 1. The
influence coefficients ay, 1 £ i) < 6 all experience very small (less than 5%) changes
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petween the undamaged and damaged states. This implies that the physical properties between
these nodes have not changed significantly. However, the coeflicients of nodes 1 through 6, paired
with nodes 7, 8, and 9 show relative changes of between 20-30%. When nodes arc on opposite
gides of the damage, i.c., nodes | through 6 are located on the undamaged column, while nodes 7,
g and 9 arc located on the damaged part of the beam, the physical properiies between the paired
nodes changes. This physical change is reflected in a more significant relative change in the value
of influence coefficients. Furthermore, the influence coefficients ay, 7 < Li <9 also
experience a noticeable change in coefficients (about 5-10%). This signifies that the physical
properties of the structure between the nodes associated with ttyg, Wsg, and ugg have changed.
Therefore, damage is more likely to cxist between these nodes. This is consistent with the
simulated damage which was applied by stiffniess reduction of the beam.
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Fig. 3 (a) Simulated model and (b) Aceeleration response in undamaged states

Table | Relative change in influence coeflicients, o, from undamaged to damaged states for simulated

structare

Node 1 p 3 4 b 6 7 8 9

} <2.52 -2.98 -5.47 -6.09 -4 36 23.38 26.90 19.65
2 0.03 -0.62 -1.24 .99 -0.80 15.20 15.59 43,37
3 (.38 -0.25 -1.16 -0.39 -0.47 30.94 14.91 22,18
4 0.73 0.26 0.18 0.16 0.04 11.57 41,78 27.38
5 0.03 0.36 -01.94 -1.54 .51 12.45 15.30 20.46
6 2230 -2.20 -3.99 -6.58 -3.98 26.69 25.47 20.65
7 S22 560 -15.14 -P3.13 -11.98 -25.28 ‘ 6.00 1241
8 1390 -15.06 -17.73 -19.65 -19.95 1348 582 537
9 -3300 0 2331 -25.59 -13.27 -33.58 -16.35 -8.56 -6.60
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While functionatity of the algorithm is showed throughout this example, its performance sy ‘

nceds to be evaluated throughout experimental data. The next section shows the implementation of
IDDA, including accuracy assessment, post-processing and decision making steps, on g
beam-column connection model constructed in the laboratory.

4. Experimental beam-column connection

IDDA 15 further verified through implementation on a laboratory beam-column connection
madel. The prototype represents a portion of the beam and column members as they come to a
local joint. The small-scale experimental prototype was constructed with the same dimensions as
the simulated model (1.8 [m] length for the column member, 0.9 [m] length for the beam member
with 25 [mm] square hollow tube cross scction with a wall thickness of 3 [mm])).The specimen is
tested for both an undamaged and a damaged state. To simulate damage in the location of the
connection joint, the beam member was switched out for a member of lesser wall thickness
(corresponding to a 40% stiffness reduction).Note that this just represents a reduction in stiffhess
near the connection and not the entire beam element.

To generate acceleration responses, the free end of the cantilever 15 attached to an actuator and
excited by harmonic foree at 15 Hz frequency with amplitude resulting in 40 mg acceleration at
sensor location 9. The wired data is collected at a 250 Hy sampling rate with cach test lasting 40
seconds. The wireless data is collected with the same length as wired data. Using both wired and
wircless sensors, the data collection is performed simultancously for direct comparison. The
undamaged and damaged structures are each tested 15 times. The collected data samples are then
processed through IDDA to detect the occurrence of damage. The results of the implementation of
the algorithm using wired sensors are presented in this scction and the comparison of sensor
network results are discussed in the next section.

The structure is instrumented with two sensor networks with different noise fevels of the
accelerometers, wired and wireless accelerometers cach including 9 sensors, as shown in Fig, 4.
The wireless accelerometers used in this implementation consist of Imote2 processing board
produced by Intel (2005) combined with SHM-A sensor board, integrating tri-axial LIS3ILO2ZAS4
{(STMicroclectronics 2005) accelerometer with 50 ug/VHz noise density, developed by Rice and
Spencer {2008, 2009). The wired sensors, on the other hand, are capacitive accelerometers
(PCB3701, Piczotronics, Inc. 2004) with 3 ugiVHz noisc density, Due to lower noise level of
wired sensors and the more reliable network, the wired results are used as a direct comparison
point for the wireless sensors. Table 2 shows the specifications of the two acceleromceters used in
the two sensor networks of this study. The reason for having two sensor networks is to assess the
cffects of sensing network quality on the damage detection process and the level of confidence for
decision making,

Tuble 2 Specificaions of the two aceelerometers used in the two sensor networks of the experiment

Paramncter LIS3ILO2AS4 PCH 3701
Acceleration range 2 g £3g
Qutput noise 50 micro-g/vHz 3 micro-g/NHz
Sensitivity 0.66 vig 1.00 vig

Temperature Range -40 to 85°C -40 to 85°C

1
|
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Fig. 4 Experimental test bed for beam-column prototype instrumented with wired and wireless
accelerometers

4.1 Accuracy assessment and verification of influence coefficients

Having 9 sensors, 72 influence coefficients can be obtained by performing linear regression and
presented in Table 3. Once the coefficients have been calculated from the acccleration data, the
estimates must be assessed to identify the most significant indicators, which can then be used for
damage detection, The cvaluation accuracy, EA and estimation error,yare integral for this accuracy
assessment. By inspection of these parameters, different trends can be identified in the undamaged
and damaged parameters, with different estimation errors and evaluation accuracies. The identified
trends are associated to the location of node pairs on the structure. Identifying these trends allow
¢lassification of nodal pairs and the associated accuracy parameters of their influence cocflicients
into six different groups  based on the values of EA and v, as presented in Table 4. In this table,
the average accuracy of pairs at different regions is rated from high to low and their corresponding
locations are presented to deseribe the reason for different accuracies. Region 1 an, ;llmfwbh,‘
corresponds to the feast estimation error and highest aceuracy, and region 6 correSjpuinds 1o f
greatest estimation error and lowest accuracy. Therefore, parameters in region 1, consisting of
w; 7 < 0,j < 9, are the most accurate and have the least error. This is a reasonable outcome as
the actuator applies force at the end of the beam, closest to nodes 7, 8, and 9. This proximity and
boundary condition result in larger amplitude of excitation at thesc nodes compared with that of
the column nodes, thus, corresponding to a higher signal-to-noise ratio (SNR) of the data at these
nodes. A higher SNR correlates 10 betier quality data and more accurate results.

On the contrary, region 6, which consists of parameter @y, cxhibits the poorest accuracy and
the greatest cstimation error, This can be accounted for by the fact that each of these nodes is
located at either end of the columm near the fixed ends. These boundary conditions restrict the
column from movement closest to the support, greatly reducing the magnitude of the acceleration
signal and thus, the SNR of these nodes. Figs. 5(a)-5(f) show examples of afrom different regions
and their corresponding EA and y. Fig. 5(a) shows that EA is almost equal to unity and y is
almost equal to 0 for region 1. The £A and y values for a region 3 pair, shown in Fig. 5(c) also
exhibit accurate values, although not quite as accurate as region 1. Fig. 5(f), howcver, shows a
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much lower EA and a noticeably higher ¥ associated with region 6. Based on similar data for afy

0 regions, it can be concluded that regions 1 through 3 contain the most accurate data and thus the
most uscful damage indicators. On average, these influence coefficients exhibit accuracy greater
than 98% and estimation error less than 0.2%.

4.2 Post processing and damage detection

Based on the accuracy assessment, region 1, 2, and 3 coefficients are considered for damage
detection. Fig. 6(a) shows the average percent changes of a few pair-wise coefficients in differam
regions on their corresponding locations. This further supports the theory that nodes on opposite
sides of damage show the greatest change, while nodes with no damage between them show a
significantly smaller change. Pairs with nodes within the damage location show some change, but
not as large as that of nodes on opposite sides. The reason for this is that when both nodes are
within the damaged arca, both nodes experience similar increases in flexibility, resulting in a less
severe differential, Therefore, inspection of the pattern of changes in pair-wise coefficients points
1o the location of damage within the structure (i.e., damage between nodes 2 and 7, 3 and 8, and so
farth).

Table 3 Relative change in influence coeflicients, oy, for experimental structure

Nade 1 bt 3 4 5 6 7 8 9
i 2.9 522 ¥.57 2.26 1.37 16.65 2139 KEI )
2 216 .21 12.75 6.36 .40 2144 1265 3Tz
3 4,15 (R 13.22 6.96 749 22.56 31914 38.54
4 12,17 15.04 16.64 6.44 6.87 14.24 18.12
5 5.67 8.62 10.21 6.68 n.22 1221 22,50 26.6%
1] 7.9 9.17 10.59 5.51 {180 il.36 21.55 15.64
7 15.54 1810 10.24 6.35 1193 1203 5.28 13.06
8 22,78 2511 26.13 14.40 19.5¢ 10.62 £.52 3.49
49 25.44 27.67 2865 17.37 2230 2242 11.63 138
Table 4 Trend regions according to average estimation error () and cvaluation accuracy (EA)
Region Influence Coefficients Lacation of pairs on the bc’am‘column ¥ Average £
= connection model " Averape
] Uirg, Wy, ANl gy Between nodes on the heam 0.0001 OO0
3 gy and s Between nn{lf@ ott each sﬁd(: of column 0.0005 0,998
> ’ (except 1 & &)
3 LSRN R SN PPN IO YR PR S PR Between nodes on ll_u': beam with those on 0.0012 0985
’ g B ey, AT Olag the column (cxeept 1 &6 )
4 Lz, My, apalisa AN Tz Between nodes on the column 0.0o01s 0975
5 . Qg g1, g, Gy, ] 249 Between nodes on the beam with those on 0.0018 0.967

the column’s ends
f Uy Between two ends of the column 0.0161 0.88%
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4.3 Hypothesis testing for significant damage

The difference between undamaged and damaged cocfficients can be indicative of the existence
and location of damage in a structure. However, in practical scenarios, it is not easy 1o determine
when damage has occurred, and make inferences at different confidence levels, Therefore, another
elemant st be sdded for emplete damage detection: a statistical framework,

The hypothesis testing plot graphically shows the change point of damage, the point at which
damage is ideniified at a certain confidence level, by plotting the test statistic against the test run
number. A graph in which the data crosses the confidence bounds, either positive or negative,
corresponds to a positive hypothesis, previously defined as A, in Eq. (9), indicating the detection
of damage. If the accuracy and estimation error associated with the nodes being considered are
high and low, respectively, the prediction of the hypothesis test will be more exact and will cross
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Fig. 6 (a) relative change of some of coclicients and (b hypothesis testing results for regions 1 o 3

the confidence bounds closer to the occurrence of damage. In order 10 demonstrate this behavior,
the test statistic from the 15 damaged state tests were plotted against their run number. Because
damage exists for all of the plotted data, the more accurate damage indicators will vield a plot in
which the confidence bounds are crossed closer to the occurrence of damage.

Considering Fig. 6(b}, it can be detenmined that a coeflicient with a larger change between the
damaged and undamaged states tends to show damage earlicr than a coelficient of comparable
accuracy with a smaller change. It was shown previously that the region 1 and region 3
cocfficients in Table 3 experienced 4-14% and 10-30% average changes, respectively. These
parameters cross the bound after only 4 and 5 runs, respectively, whereas, the region 2 coefficients,
with 1 to 7% change, take 7 runs to confidently show damage. This suggests that when a statistic
crosses the bound first, compared to coefficients of similar accuracy, it is more important to the
damage location. Therefore, these plots demonstrate that damage is detected by hypothesis testing,
making this method a reliable means of damage detection.

4.4 Comparison of wired and wireless sensor networks

In order to consider realistic application of the proposed damage detection method, there must
be a reliable and affordable sensor network with which to instrument the structure. Continued
advancements in wireless sensor lechnology strive to fulfill that role. Deployment of wireless
sensor networks (WSNs) is more affordable in terms of manufacturing cost and installation,
However, while WSNs make the deployment of SHM more convenient, their possible impact on
the reliability and accuracy of the results needs to be assessed (Dorvash and Pakzad 2012). Some
challenges in the design of wircless sensor units, such as the trade-off between the functionality
and the power consumption, and also attempts for minimizing the cost, cause limitations in their

architecture. Literature shows rescarch efforts which present validation of the performance of

W3Ns through implementations in SHM (Lu er af. 2005, 2006, Wang ¢t /. 2006, Cho er al. 2008).
It is however very important 10 assess the performance of WSNs through comparison of results in
SHM applications. In this study, by installing the two wired and wireless sensor networks on the

i G "
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ijen for simultaneous data collection, dircct comparison of result is possible which provides
the opportunity to investipate the effects of sensing quality on the performance of the proposed
slgorithn.
~ During the tests, data was collected using two previously deseribed sensor networks (wircless
and wired). Mcasured data from each sensor network was analyzed independently. Since the two
{ata acquisition systems worked separately, the data was not automatically synchronized; however,
the two sensing networks start measurement at an approximately the same time. By collecting data
simultaneously, differences in results duc to changes in environmental factors and noise between
" the two datasets are avoided. Therefore, any differences that appear between the two scts can be
attributed to sensing network quality (i.e., performance comparison will reflect the differences
corresponding 1o sensing systems and not different environmental conditions).
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Fig. 7 Comparison of wired versus wireless data in both the time and frequency domains
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Fig. 8 Comparison of relative change of coeflicients between wireless and wired sensor data
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As the first step for comparison of the performance of the two sensor networks, the collected
data from the two are compared in time and frequency domains, Acceleration signals (10,000
samples) are collected at 280 Hz and 250 Hz with the wireless and wired sensors, respectively.
Fig. 7 shows a comparison of the data collected at node 9, the node with the largest recorded
amplitude. Both wired and wireless signals show the harmonic response due to the harmonic
excitation clearly with low visible noise. The frequency content of cach sensor type is also
comparable; both show a dominant peak at the forcing frequency of 15 Hz, However the wireless
data contains more noise at high frequencies as well as at very low frequencies. Note that in
creating these plots no digital post-processing (filtering) was performed and the figures show the
calibrated recorded signals with the two systems.

Fig. 8 also shows the relative change for selected nodal pairs of the WSN and wired datasets,
The changes at ttgs, 0g;, and ag; of the WSN are comparable to the changes expected from the
wired results. The change at agqfrom the WSN is a bit larger than that of the wired, but still on par
with other nodal pairs of its type (beam-beam within damage). On the other hand, a notable
inconsistency is seen in two of the column-column nodal pairs, @y, and oge. The WSEN shows
significantly larger changes, almost 10 times larger than those scen in the wired results. Thig
drastic variation can be explained by the EA and y values of these two coefficients having
significantly lower accuracies (less than 0.9) compared 1o the other four WSN valucs and the
wired values. Lower accuracy correlates to lower reliability. Consequently, these coefficients
would not be considered as trusted damage indicators.

A further verification of the algorithm, when using wireless sensors, is obtained via inspection
of the hypothesis testing results. The corresponding result for pair-wise coefticient 8-2 and 5-2 is
presented in Fig, 9, The first observation from these plots 1s that the wired sensor system is the
first system that identifies the occurrence of damage. This is reasonable based on the higher
accuracy associated with wired system compared with this particular WSN in all the results. Fig.
10 shows a direct comparison of influence coefficients ag; and ag, and their corresponding
evaluation accuracy and estimation errors. While both sensor networks reflect the change in the
influence coefficients (i.e., indicate the damage), the accuracy of wired sensor results is higher.
The performance of wireless sensors, however, is still acceptable since it does detect the damage
with 95% confidence level, according to the hypothesis tests, even though this is detected after its
detection by the wired system. Bascd on the presented comparizon points it can be seen that the
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WSN, while exhibiting higher noise than the wired network, is still effective in localizing the onset
of damage. Considering the higher level of noise in the collected data from the wireless sensors
{(which can be seen in the specification presented in Table 2), the lower accuracy observed in the
results of the WSN is reasonable. However, the higher noise in this case could be a worthwhile
tradcofl” when considering the drastic difference in the cost and implementation difficulties
between the two networks.
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Fig, 10 Comparison of influence coetficient changes, evaluation accuracies and estimation error for two
pair-wise nodes (8-2 and 5-2), wired vs. wireless networks

5, Conclusions

An influence-based damage detection algorithm (IDDA) is presented in this paper which is
based on regression of the structural response at different locations. The algorithm is inlegrated
with accuracy indicators and a statistical framework to enable evaluation of the significance of the
damage as well as estimation of its Jocation, when the damage is detected. To validate IDDA, it is
implemented on analytical and experimental models and its performance is evaluated, For the
experimental validation, harmonic excitation is selected. However, random excitations for this
implementation should be considered in future studies. It 15 illustrated that the selected damage
indicators cflectively reflect the structural damage which were simulated in analytical and
gxperimental models. During the implementation of the algorithm on the experimental model, two
different networks of wired and wireless sensors with different noise characteristics were utilized,
While validating the performance of IDDA, the damage detection resulted from data from each of
the two sensor networks were compared and the sensitivity of the algorithm to the sensor
characteristics was investigated. The result showed that both sensor networks are able 10 reflect the
change in the influence coefficients and detect damage. However, the accuracy of the wired sensor
results was higher, as the noise level of the utilized sensors was lower. The performance of
wircless sensors, however, was acceptable as it detected the damage with 95% confidence level,
even though it did so later than the wired sensors.

As IDDA is shown to be effective in detecting damage and 1ts location, the future study will be
devoled to further investigation of its performance through implementation on large-scale models.
Additionally, the embedded processors of the wireless sensors allows for on-board computation
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which enables operation of the algorithm on the wircless sensors and providing an automated
damage detection system; this task is left for the future work.,
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