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Abstract: A series of optimal sensor placement (OSP) techniques is discussed in this paper. A framework for deciding the optimum number
and location of sensors is proposed, to establish an effective structural health monitoring (SHM) system. The vibration response from an op-
timized sensor network reduces the installation and operational cost, simplifies the computational processes for a SHM system, and ensures an
accurate estimation of monitoring parameters. In particular, the proposed framework focuses on the determination of the number of sensors and
their proper locations to estimate modal properties of bridge systems. The relative importance of sensing locations in terms of signal strength
was obtained by applying several OSP techniques, which include effective influence (EI), EI-driving point residue (EI-DPR), and kinetic energy
(KE) methods. Additionally, the modified variance (MV) method, based on the principal component analysis (PCA), was developed with the
assumption of independence in modal ordinates at each sensing location. Modal assurance criterion (MAC) between the target and interpolated
mode shapes from an optimal sensor set was utilized as an effective measure to determine the number of sensors. The proposed framework is
verified by three examples: (1) a numerically simulated simply supported beam, (2) finite-element (FE)model of theNorthampton Street Bridge
(NSB), and (3) modal information identified using a set of wireless sensor data from the Golden Gate Bridge (GGB). These three examples
demonstrate the application and efficiency of the proposed framework to optimize the number of sensors and verify the performance of the
MV method compared to the EI, EI-DPR, and KE methods. DOI: 10.1061/(ASCE)BE.1943-5592.0000594. © 2014 American Society of
Civil Engineers.

Author keywords: Structural health monitoring; Optimal sensor placement; Optimal number of sensors; Bridge systems; Modal assurance
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Introduction

Optimal sensor placement (OSP) is a common issue for all engi-
neering systems for vibration monitoring (Kammer 1990; Yao et al.
1992; Laory et al. 2012). The OSP techniques have been applied to
mechanical, aerospace, and structural systems for designing the best
sensing locations, which are used to estimate modal parameters
based on vibration response. Even though modal parameters were
among the early features considered for damage detection, they have
proved to be not themost effective damage features, because they are
not sensitive to local damage. However, the accurate character-
ization of modal parameters is important in vibration analysis of
structures to calibrate finite-element (FE) models and anticipate
dynamic behavior of structures.

As a structural health monitoring (SHM) technique, OSP is
considered a challenge for accurate damage identification and esti-
mation ofmodal parameters (Huston et al. 1994; Morassi and Tonon
2008; Saitta et al. 2008). Advancements in sensing technology,
represented by the wireless sensor network (WSN) (Spencer et al.
2004; Lynch and Loh 2006; Pakzad and Fenves 2009), have

facilitated the possibility of vibrationmonitoring ofmany structures.
However, because the data transmission is a costly task in WSN,
maintaining an optimum sensor network size that can still provide
the necessary modal information is critical. OSP technique can be
utilized efficiently for practical SHM implementations by elimi-
nating redundant sensor data, be it by limiting the number of sensors
or by emphasizing which sensors’ data should be queried wirelessly
for timely modal estimation.

Sensor placement methods examine the information on sensing
nodes that are sufficiently sensitive to detect changes in modal
parameters (Meo and Zumpano 2005; Cha et al. 2012). The OSP
techniques reduce the chance of measuring and processing a large
volume of redundant sensor data. Effective influence (EI) method,
proposed by Kammer (1990), is one of the most widely used OSP
techniques and has been used for many applications (Worden and
Burrows 2001; Li et al. 2007, 2011). EI method classifies sensor
locations based on the quantified information on observing target
modes and eliminates less significant locations from the candidates.
To consider the relative contribution of each mode on candidate
locations, the driving point residue (DPR) index was introduced and
combined with EI method (Papadopoulos and Garcia 1998). Heo
et al. (1997) proposed the kinetic energy (KE) method to determine
a sensor set that maximizes the KE of the system. Carne and
Dohrmann (1995) used the correlation of target mode shapes and
defined the sensor set that minimizes the off-diagonal term of
correlation matrix. The covariance of target mode shape matrix was
utilized for the variance method (Meo and Zumpano 2005), which
features the determinant of covariance of the target mode shape
matrix as maximized when the optimal sensor configuration is
achieved.

The main objective of this study was to develop and validate
a new framework for OSP with a minimum number of sensors. In
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general, a large number of sensor nodes are preferred for accurate
estimation of modal parameters and effective damage feature ex-
traction for large-scale civil infrastructure. Also, the development of
dense WSN and computing technology supports processing a large
amount of sensor data. WSN commonly is considered to be cost-
effective and convenient for managing a large simultaneous sensor
set. The advantage of using WSN for vibration monitoring can be
maximized with the integration of OSP technique, which minimizes
the cost associated with the installation and synchronization of all
wireless sensor units and estimates dynamic characteristics of the
structure accurately (Papadimitriou 2004). The OSP techniques also
are expected to process sensor data more efficiently and to avoid
collecting a large amount of redundant data.

The OSP techniques demonstrate that the accurate estimation of
modal parameters can be achieved when the sensors are located
properly. In general, the target modes for OSP techniques are se-
lected from preliminary studies, such as FE models or previous field
tests, and the sensing locations can be optimized depending on the
number of sensors, based on the measure of signal strength at each
candidate location. However, the target mode shapes may not be
observed accurately from the chosen sensor configuration when the
number of sensors is insufficient, sensors are clustered in few
regions, or located on modal nodes. To optimize the use of OSP
techniques, the minimum number of sensors that is able to charac-
terize the desired mode shapes accurately needs to be identified.

This paper focuses on creating a framework to locate sensors on
bridge systems using several OSP techniques and based on the
preliminary/previous field tests or FE model. In addition to the
existingOSP techniques (including EI, EI-DPR, andKE), amodified
variance (MV)method is introduced, which is based on the principal
component analysis (PCA). The MV method is advantageous for
practical implementations by reducing computational tasks for in-
vestigating all possible sensor configurations in the variancemethod.
The essence of individual OSP techniques applied in this study is to
utilize the optimum sensing locations to identify all targeted modes
accurately. Based on the sensor configuration, the mode shapes are
interpolated using the spline (Ahlberg et al. 1967) or kriging (Sacks
et al. 1989) method. Modal assurance criteria (MAC; Ewins 1984)
between the interpolated mode shape from the optimal sensor
configuration and the targeted are then used to examine the per-
formance of the chosen sensor configuration. The MAC value is
a robust and effective parameter to apply to the preliminary mode
shapes, because the error in estimated modes from the FE model or
preliminaryfield tests does not impact it significantly. The number of
sensing locations is increased until the subset of sensors estimates
target mode shapes with satisfactory accuracy.

To verify this method, it was applied to three examples: (1) a
simply supported beam with 19–degrees of freedom (DOF) lumped
mass; (2) the Northampton Street Bridge (NSB), which has 42 candi-
date sensing locations; and (3) the Golden Gate Bridge (GGB) modal
identified using ambient vibration data from 46 wireless sensing
units.

Framework of Optimal Number of Sensors in
Bridge System

The objective of the optimization problem is tominimize the number
of sensors and to locate them properly for the quality estimation of
target dynamic modes in bridge structures. In particular, vertical and
torsional modes are targeted together, so that the optimal sensor
configuration is suitable to monitor all mode shapes usually asso-
ciated with vertical response. The optimal number of sensors and
their locations are expected to simultaneously produce the minimum

sensor management cost as well as accurate estimation of structural
modal parameters.

Several OSP techniques were applied to define the best sensing
locations, suitable for observing target mode shapes associated with
the number of sensors. As a common criterion to decide the number
of sensors in this study, the MAC value between the interpolated
(from an optimal sensor configuration) and target mode shapes was
used. For an individual subset of sensors, curve-fitting methods
[spline (Ahlberg et al. 1967) and kriging (Belytschko et al. 1994)]
were applied to interpolate modal ordinates at locations that were
excluded from the candidate locations. The following is a brief
description of the investigated interpolation methods.

Spline Interpolation

The spline is a widely used curve-fitting method that minimizes total
curvature and maximizes straightness of the approximated shape
(Ahlberg et al. 1967). The modal ordinates for the nonmeasurable or
nonmeasured locations are interpolated by using the piecewise pth
order of spline, which minimizes the residual sum of squares, S,
defined as

S ¼ P
i
½yi 2 sðxiÞ�2 (1)

where xi 5 ith sensing location; yi 5 corresponding sensor data;
and s5 pth order of polynomial function for each segment. The
compatibility equations are defined by using the continuities of
entire shape function at sensor locations up to ð p2 1Þth derivatives.
To compensate the unknown coefficients for piecewise polynomial
functions, the additional modal ordinates are extrapolated linearly
for the outside of the investigated span. Using the continuity of
modal ordinates as well as their derivatives, the continuous piece-
wise functions are determined.

Kriging Interpolation

The kriging method estimates a shape function that minimizes the
error of the spatial predictions (Belytschko et al. 1994). A kriging
model is defined as a weighted sum of known neighbors and
indicates a geostatistical estimator, which fits well with real mode
shapes. The shape function is initially estimated by a linear re-
gression model with random error zðxiÞ as

yi ¼ pðxiÞTaþ zðxiÞ (2)

where pðxiÞ 5 a set of nonlinear basis, dependent on geometric
information of xi, e.g., pðxiÞT 5 ½1 xi� for linear basis; a 5 co-
efficient vector that minimizes the error of predictor; and zðxiÞ
5 realization of a stochastic process with zero mean and a nonzero
covariance. The covariance matrix of zðxÞ is defined by the corre-
lation between modal ordinates at two locations. Gaussian function
frequently is used to reflect high correlation for closely located
sensors as

R
�
xi, xj

� ¼ exp
�
2ur2ij

�
(3)

where u 5 predefined correlation parameter; and rij 5 physical
distance between xi and xj. This is an appropriate choice, because
aGaussian function is simple and convenient tomodel correlation that
smoothly decreases as the relative distance increases. Themode shape
is estimated using the best linear unbiased prediction of a. To for-
mulate a well-conditioned R matrix, the optimal value of correlation
parameter should be defined. In this study, the correlation parameter,
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u, is iteratively controlled to place eigenvalues of the covariance
matrix within interval [1026 to 1021], which promises quality esti-
mation of shape function based on the parametric analysis (Gu 2003).

MAC Comparison

MAC for the ith target mode between an estimated mode shape
vector with interpolation (w) and an exact mode shape (~w) is cal-
culated as

MACi ¼ jwT~w jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
wTw

��
~wT~w

�r �
i ¼ 1, 2, . . . ,N

�
(4)

where N 5 number of target modes.
To examine the MAC variation, its sensitivity with respect to

sensor locations was investigated and the contour plots for MAC
and its derivative were visualized. A MAC value between the esti-
mated mode shape f̂ðxÞ and the exact mode shape fðxÞ associated
with vertical vibration for bridge structures can be defined as
a function of sensor locations (x1, x2, . . . , xN ) as

MACðx1, x2, . . . , xNÞ ¼
PN

i50

ðxiþ1

xi

h
fðxÞ × f̂iðxÞ

i
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ xNþ1

x0
½fðxÞ�2 dx

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i50

ðxiþ1

xi

h
f̂iðxÞ

i2
dx

s

(5)

The maxima of Eq. (5) can be obtained by searching its zero
derivatives. For example, if the true mode shapes are sinusoidal (as
is the case for a simple beam with distributed mass and elasticity),
the problem of finding the optimal locations for any two sensors has
two solutions, which correspond to its zero derivatives; these sol-
utions occur when x5 ½0:25 0:75� or x5 ½0:75 0:25�, as shown
in contour plots (Fig. 1). In the same manner, the best sensor
configuration to maximize MAC for higher modes was investigated
with additional sensors and the correspondingMACvalues are noted
(Table 1). Additionally, a MAC value was estimated when an equal
number of sensors were uniformly spaced. The results indicated that
the interpolation accurately approximates target mode shape better
when the sensors are located properly.

The error of MAC is defined as a measure of accuracy associated
with the number of sensors as

ɛMAC ¼ 12minðMACÞ (6)

All target modes were considered as identified when ɛMAC was
smaller than the desired level; otherwise, an extra sensor was added
on the next configuration and the comparison task was repeated.

Because the closed-form solution to obtain maximum MAC is
applicable only for the low-dimensional problems owing to heavy
computational tasks, theOSP techniques should provide an effective
way to search for the best sensor configuration with efficient com-
putational cost. The minimum number of sensors is determined
when the criteria for minimum error ofMAC are satisfied. The entire
procedure is organized in Fig. 2.

Optimal Sensor Placement

The OSP techniques in this study play a key role of ranking sensing
locations based on the relative importance to monitor target modes,
which can be conducted by the following methods: (1) EI, (2) EI-
DPR, and (3) KE. As an alternative approach, the MV method is
introduced based on the PCA. The theoretical backgrounds of these
four OSP techniques are described subsequently.

EI Method

Kammer (1990) proposed the EI method for searching the best
locations with N number of sensors. The Fisher information matrix
(Middleton 1960) associated with candidate sensing locations is

Fig. 1. 3D contour of (a)MAC and (b) ∂MAC=∂xi when two sensors are located on a simply supported beammodel to observe a sinusoidal mode shape

Table 1. Best Sensor Configuration to Observe Harmonic Mode Shape
Using Cubic Spline and Comparison of MAC to Uniformly Spaced One

Mode
Sensor location to
maximize MAC

MAC

Optimal
solution

Uniform
spacing

1 0.500 0.9999 0.9999
2 0.250, 0.750 0.9999 0.9980
3 0.167, 0.500, 0.833 0.9999 0.9916
4 0.138, 0.362, 0.639, 0.862 0.9997 0.9810
5 0.121, 0.288, 0.500, 0.712, 0.879 0.9991 0.9677
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evaluated for target modes and, then, used to maximize the spatial
independence by ranking the contribution of each sensing location.

The vibration response, y, measured from the structure can be
estimated with the combination of the contribution of m target modes
as

y ¼ Fqþ w (7)

where F2Rn3m 5 target mode shape matrix obtained from FE
modelwithn5number of the candidate sensing locations;q5modal
contribution factor associated with m target modes; and w 5 sta-
tionary random noise vector with a mean of zero.

An unbiased estimator q̂5 ðFTFÞ21FT is used to evaluate the
error in the estimation of vibration response. The numeric de-
ployment shows that the covariance of the error between the modal
contribution factor q and the unbiased estimator q̂ is identical to the
inverse of the Fisher information matrix F as

J ¼ E
h�
q2 q̂

��
q2 q̂

�Ti ¼ �
1
s2F

TF
�21

¼ F21 (8)

where s 5 variance of the stationary random noise vector, w. The
Fisher information matrix measures the amount of information that
the mode shape matrix carries for a specific sensor set. Therefore,
the best estimation q̂ is achieved when a Fisher information matrix,
F, is maximized.

The EI method solves this optimization problem by examining
the contribution of the candidate sensor nodes and truncating sen-
sor positions that lower the determinant of F. For evaluating the
contribution of the candidate sensor locations, the effective in-
dependence distribution (EID) vector,ED, is introduced as (Kammer
1990)

ED ¼ ½Fc�Ä ½Fc� ×l21i (9)

where c and l 5 eigenvector and eigenvalue of F, respectively;
i5 column vector composed ofm unity values to sum all fractional
contribution corresponding to target modes at each sensor location;
and Ä 5 term-by-term matrix multiplication, which transforms the
dot product Fc into absolute identification space to quantify modal
contribution at each sensor location.

The ith element of ED indicates the fractional contribution at ith
sensor location when all target modes are considered to be equally
important. A sensor location that is noted as a lowest index of ED is
discarded from the candidate locations, and this procedure is re-
peated until the candidate location is a null value and the priority of
sensor locations is determined.

EI-DPR Method

The DPR coefficient was introduced previously to enhance the EI
method (Papadopoulos and Garcia 1998). The limitation of the EI
method, which allows selecting sensor locations associated with low
energy content, is avoided by multiplying the DPR coefficient for
each element of a fractional contribution vector. The newly de-
scribed EID vector (ED DPR) is calculated as

ED DPR ¼ �½Fc�Ä ½Fc� ×l21i
�
ÄDPR (10)

In Eq. (10), the ith element of DPR is given by

DPRi ¼ Pm
j51

f2
ij

vj
(11)

where fij 5 modal coordinate for jth mode at ith location; and vj

5 jth modal frequency. The DPR coefficient is a weighting factor
that considers relative modal contribution on each sensing location
to evaluate EID vector. Consequently, EI-DPRmethod concentrates
the sensors on the high energy content regions.

KE Method

Heo et al. (1997) proposed the KE method, which is similar to EI in
the procedure but directly involves the mass of the system. KE
method is supposed to maximize the KE instead of the Fisher in-
formation matrix of the EI and EI-DPRmethods. The KEmatrixP is
defined as

P ¼ FTMF (12)

whereM 5 mass of the structure. The KE matrix can be expressed
as the dot product of matrix C and its transpose by decomposing
the mass matrix into the lower (L) and upper (U) triangular Choleski
factor matrices as

P ¼ CTC (13)

where M5LU; and C5UF. Similar to the Fisher information
matrix in EI method, the KE matrix can be considered as a measure
of the amount of information in target mode shape matrix with
the weighting factor of U. The rest of the procedures, repeating the
truncation of sensing locations from the candidate, are similar to the
EI method.

Fig. 2. Framework for determining the best sensor configuration
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MV Method

The proposed MV method utilizes PCA, which transforms a set of
observed data into uncorrelated variables such that the greater var-
iable indicates the more informative component. The covariance
matrix is a widely used mathematical tool to estimate the correlation
between associated variables. Fedorov andHackl (1994) studied the
most informative subset using covariance analysis from randomly
distributed observation. Variance method, based on the most in-
formative subset technique, has been developed to locate sensors on
the bridge systems by using the independency of modal ordinates at
each sensing location (Meo and Zumpano 2005). To estimate the
signal strength of the investigated sensor configuration, the vr index
is introduced, estimating signal strength by normalizing the diagonal
element by the sum of off-diagonal elements. Although variance
method reduces computational cost by avoiding the determinant
estimation, it is still computationally expensive because signal
strengths should be estimated for all possible subsets. The total
number of subsets of target mode shapes, Nc, is defined as

Nc ¼ Pn21

k51

�
n

k

�
¼ Pn21

k51

n!
k!ðn2 kÞ! (14)

where k 5 number of sensors, which is usually unknown for OSP.
The number of possible subsets, which is a function of candidate
sensor locations, increases greater than exponentially.

In this study, a new OSP technique that is based on PCA is
proposed. This method performs better than the variance method
with relatively light computational cost for high-dimensional
problems. The mode shape data, used to calculate covariance ma-
trix, are transformed into C5 ½FT 2FT�T to prevent the irreg-
ularity in covariancematrix from the biased sign convention for each
mode and to increase independency of modal information in each
sensing location. The observable modal ordinates from p locations,
CT

p 5 ½FT
p 2FT

p �, are used to evaluate the linearly estimatedmodal

ordinates Ĉ
T
q 5 ½F̂T

q 2 F̂
T
q � for the rest of n2 p locations as (Fedorov

and Hackl 1994)

Ĉ
T
q ¼ CqpC21

pp C
T
p (15)

where q5 n2 p; and Cqp and Cpp 5 block matrices that are the
submatrix of the covariance of the total target mode shape matrix
CT 5 ½CT

p CT
q �, which yields

cov
�
CT� ¼

"
Cpp Cpq

Cqp Cqq

#
¼

cov
�
CT

p

�
Cpq

Cqp cov
�
CT

q

�
2
4

3
5 (16)

The error in the unbiased estimator is minimized when the de-
terminant of Cpp is maximized (Fedorov and Hackl 1994). For the
invertible Cpp, the number of sensors is at least equal to the number
of target modes so that the zero eigenvalue is avoided.

The independence of modal parameters at each sensing location
theoretically formulates a diagonal matrix for covðCTÞ as well as its
submatrix Cpp. As noted before, the independence between modal
ordinates from two sensing locations is enhanced by assembling
target mode matrix with original mode shape and its negative. The
signal strength of the candidate sensing location can be represented
by the diagonal element of covðCTÞ, while the off-diagonal ele-
ments are considered as noise parameters.

For the practical implementations, the pc index is introduced to
evaluate the signal strength at each sensing node with consideration
for the dispersion of off-diagonal coefficients as

pci ¼ ciiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j51, j�i

c2ij
r (17)

where cij5 ith row and jth column of the covariance matrix. The
sensor location with the lowest signal strength vanishes from the
candidate sensor locations and this procedure is repeated for the re-
duced size of target mode matrix.

Case Studies

Three examples were used to verify the performance of the proposed
OSP technique and to define the optimal number of sensors: (1)
a numerically simulated, 19-DOF, simply supported beam with
lumped masses on each node; (2) NSB with 42 candidate sensing
locations; and (3) GGBwith 46 vertical wireless sensors. In addition
to the verification of the proposed framework, the simply supported
beam model was used to compare the performance of the MV
method to existing methods and exact solution, which require heavy
computational tasks. The NSB example investigated the effect of
symmetric condition for OSP in bridge systems and different levels
of MAC. The preliminary field test result was used for the GGB
example, and the effect of interpolation methods is discussed.

Simply Supported Beam

This example verified the performance of the MV method and
compared it to results from the variance method and the exact so-
lution, which maximizes the determinant of covariance matrix. A
19-DOF, lumped mass system was designed numerically for a sim-
ply supported beam model. The unit mass was distributed on the
equally spaced, 19 candidate sensing locations, and the dynamic
condensation was applied tomonitor vertical modes. The submatrix,
which maximizes its determinant depending on the number of
sensors, was compared to results from theMVmethod. Spline fitting
was used for both methods to interpolate mode shapes.

Table 2 shows the best sensing locations depending on the
number of sensors when the first five dynamic modes are targeted.
Because the rank of the covariance matrix usually is determined as
equal to the number of target modes, at minimum the equivalent
number of sensing locations, which was five for this example,
theoretically are required to collect sufficient information in the
optimal sensor configuration. The results in Table 2 indicate that the
sensor configurations for MV identifies the same sensor configu-
ration with almost uniform spacing as the exact solution when five
sensors are placed, whereas variance method shows a different sensor
configuration.

The significant advantage of the MV method is the reduction of
computational cost via elimination of candidate sensor location one
by one (instead of investigation of all possible sensor config-
urations). The computational efficiency was compared by estimat-
ing the total number of operations, which is a function of the number
of candidate sensor locations and the number of target modes. Fig. 3
shows the number of operations in logarithmic scale when the
number of target modes is varied, and demonstrates that the MV
method is computationally more efficient than others. Considering
that this result excludes the memory allocation process for large
memory storage, the MV method is more efficient in maintaining
accurate search for principal component and practically applicable
for many engineering systems associated with dense sensor
networks.

Further information is contained in the error of minimum MAC
among the target modes in logarithmic scale versus the number of

© ASCE 04014019-5 J. Bridge Eng.

J. Bridge Eng. 2014.19.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
E

H
IG

H
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/1
0/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



active sensors (Fig. 4). It shows that mode shapes can be estimated
using five sensors with more than 99% agreement inMAC. Because
of the zero eigenvalues, the error of MAC after six sensor locations
was random for the maximum determinant of covariance matrix,
while it decreased monotonously for the MV method.

The proposed framework for the optimal number of sensors was
applied to analyze the performance of OSP methods including EI,
EI-DPR, KE, as well as the MV method. All mode shapes were
interpolated using kriging method and the MAC threshold of 0.99
was used. Except EI-DPR, all investigated methods showed the
linear increase in the number of sensors owing to an increase in the
target modes (Fig. 5).

Northampton Street Bridge

The NSB, which connects Easton, Pennsylvania, to Phillipsburg,
New Jersey, across the Delaware River, was used for the application
of OSP considering the number of sensors. The NSB is a cantilever
truss bridge with a total span length of 170.688 m (560 ft) supported
by two piers. The main span of the bridge is composed of nine
stringers that are crossed by floor beams. To observe modal
parameters of the bridge, the FE model of the bridge was built in
SAP2000 with 375 truss elements and 265 nodes. Fig. 6 shows the
plan and elevation views of the NSB and the 21 candidate sensing
locations on both north and south sides (rectangular shape markers).
In this study, vertical and torsional modes were considered as target
modes, of which the first five are shown in Fig. 7 with their natural
frequencies.

The four OSP techniques were applied to determine both the
optimal number of sensors and their best sensing locations. The

results by OSP showed almost symmetric sensor configurations in
the longitudinal direction. (A particular case of sensor configuration
is shown subsequently.) For this example, the mode shapes for north
and south sides were interpolated separately using spline based on
theOSPresults. Figs. 8(a and b) show the required number of sensors
versus the number of targetmodes for theMAC thresholds of 0.9 and
0.95, respectively. The optimal numbers of sensors generally did
not increase linearly as the number of target modes increased. All
methods recorded a similar performance when the number of target
modeswas less thanfive regardless ofMAC thresholds. The reduced

Table 2. Sensor Configuration Comparison for 19-DOF, Simply Supported Beam with Lump Mass

Number of sensors

Sensor locations

Exact solution MV Variance

1 X X X
2 X X X X X X
3 X X X X X X X X X
4 X X X X X X X X X X X X
5 X X X X X X X X X X X X X X X
6 X X X X X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X X X X X X X X
8 X X X X X X X X X X X X X X X X X X X X X X X X

Fig. 3. Comparison of number of operations in MV and variance
methods with exact solution

Fig. 4. Error in minimum MAC among target modes for MV method
(X) and exact solution (open square)

Fig. 5.Optimal number of sensors for 19-DOF, simply supported beam
using MV, EI, EI-DPR, and KE methods
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number of sensor locations suggested that the better estimation of
signal strength was achieved with the higher target modes. This
provided more opportunities to minimize the number of sensors and
monitor more modal information. By including the higher modes in
the target modes, a better optimization result was achieved. This
effect was more frequent when the MAC threshold was 0.95, which

occurred when the preliminary study/FE model could provide an
accurate estimate of these modes. Because the MAC comparison
only was required for the target modes, the optimal number of
sensors could be reduced further; for example, the optimal number of
sensors for theKEmethod to estimate three targetmodes could be 11
or fewer, instead of 15.

Fig. 6. Plan and elevation views of NSB with 42 candidate sensor locations

Fig. 7. First five estimated mode shapes (three vertical and two torsional) of NSB

Fig. 8. Number of sensors for each number of target modes for NSB: (a) MAC 5 0.90; (b) MAC 5 0.95
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To investigate the actual sensor configuration depending on the
method, the sensor locations were plotted for a particular scenario in
which five modes were targeted and the MAC threshold was set to
0.95 (Fig. 9). To investigate the effect of OSP methods, the target
modes were not expanded. All methods commonly determined 15
sensing locations as an optimal solution: the MVmethod [Fig. 9(a)]
located sensors symmetrically on both sides of the north and south as
well as the east and west with fairly uniform spacing; the EI method
[Fig. 9(b)] and KE method [Fig. 9(d)] showed similar sensor con-
figuration with fairly uniform spacing; and the EI-DPR method
[Fig. 9(c)] concentrated sensor locations on the middle of the main
span and no sensors on either side spans. This sensor configuration
was focused on the lower modes. Theoretically, the DPR parameter
gives more weight (because of high impact) for very low modes
compared to EID vector of the EI method. As noted in the OSP
results and sensor configuration plots, OSP methods estimated
a least informative location sequentially from both sides of the
bridge. Depending on the mode shape information and applied
method, this procedure resulted in nonsymmetric configurations for
both sides of the bridge. It implies the importance of investigating
signal strength from both sides of a bridge structure for accurate
mode shape estimation, and is practically usefulwhen nonsymmetric
behavior is observed or expected from the preliminary tests.

Golden Gate Bridge

The MV method was verified using the dynamic modes from the
GGB identified from ambient vibration data. Pakzad and Fenves
(2009) used a WSN to measure acceleration data from 65 wireless
sensing units, and identified 25 vertical, 19 torsional, and 23
transverse modes on the main span of the bridge using the auto-
regressive (AR) method (Pandit 1991). To distinguish the vertical
and torsional modes that are coupled in the vertical response, three
reference nodeswere installed on the opposite side of the bridge (east
side). In this application, vertical and torsional modes were targeted
using modal ordinates from the 46 candidate locations on the west
side of the bridge. For estimating modal parameters of the bridge,
structural modal identification toolsuite (SMIT; Chang and Pakzad
2013) was used to analyze vertical acceleration response.

This example aimed to verify the best sensor configuration using
modal parameters from system identification and to compare the
performanceof investigated interpolation techniques. Figs. 10(a and b)
show the number of required sensors for each method versus the
number of target modes with the MAC thresholds of 0.95 when both
spline and kriging interpolation methods, respectively, were used to
observe mode shapes. Generally, the minimum number of sensors
increased linearly as the additional modes were targeted. The MV
method produced the smallest minimum number of sensors for most

Fig. 9.Optimal sensor configurationwhen thefirstfivemodes are targeted from theFEmodel ofNSB; 15 sensors for all investigatedmethods including
(a) MV, (b) EI, (c) EI-DPR, and (d) KE methods

Fig. 10. Number of sensors for each number of target modes of GGB for MAC threshold of 0.95: (a) spline; (b) kriging
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scenarios. Also, kriging interpolation showed better performance than
spline in determining the number of sensors. For both interpolation
methods, the minimum number of sensors decreased as target modes
increased, regardless of OSP methods, when a low number of modes
were targeted. This indicates that the signal strength at candidate
sensing locations was evaluated incorrectly owing to insufficient in-
formation of mode shape matrix.

The results of OSP were utilized to determine the minimum
number of sensors using MAC comparison for any specific number
of target modes. Fig. 11 shows the optimal sensor configurations for
all investigatedmethodswhen 20modeswere targeted. The required
number of sensors for the MV method was 12 when kriging in-
terpolationwith theMAC threshold of 0.95was used, which showed
a better performance in minimizing the number of sensors compared
to theEI, EI-DPR, andKEmethods. Themaximumerror ofMAC for
each method is plotted [Fig. 11(e)], with the number of sensors to
satisfy the given MAC threshold marked.

Conclusion

In this paper, a framework to optimize the number of sensors and
their locations for bridge systems is proposed. The OSP techniques
were integrated with the proposed framework to analyze the best
sensor configuration. All investigated OSP techniques evaluated
signal strength for candidate sensing locations, and the results were
used to reconstruct the dynamic mode shapes as they were targeted
using the minimum number of sensors. As a criterion to determine
the minimum number of sensors, a MAC value between the exact
and the estimated mode shapes was used.

Several OSPmethodswere applied to quantify the signal strength
for candidate sensor nodes. In addition to the existing OSPmethods,
the MV method was developed to estimate signal strength from the
covariance of transformed mode shape matrix. The MV method
successfully determined priority of sensing locations, and proved
more effective compared to the variance method and exact solution
using the simply supported beam example. The computational cost
comparison showed that theMVmethod is more practical for sensor

placement in engineering systems instrumented with a large sensor
network.

The results of OSP methods for NSB showed similar perfor-
mance for all investigated methods in terms of the minimum number
of sensors. The EI-DPR method concentrated sensors on the mid-
span, whereas the EI, KE, and MV methods located sensors with
almost uniform spacing. Themost effective OSPmethod for specific
target modes depended on the level MAC threshold, for which en-
gineering judgment is required, to place the optimal number of
sensors in the proper locations. A nonlinear relationship between the
numbers of target modes and the number of sensors was observed,
which provided more opportunities to minimize the number of
sensors when higher modes were estimated from the preliminary
study/FE model.

The implementation of modal parameters for GGB verified that
the preliminary field test was used effectively to monitor the vi-
bration of the bridge. Two techniques (spline and kriging) were
investigated to interpolate mode shapes from the selected locations.
Spline assumes the boundary conditions to connect piecewise
components and kriging requires a priori information for the co-
variance of a stochastic process. The results from the analysis of
GGB indicated kriging was more effective to estimate mode shapes
accurately. For this example, the MV method performed better
compared to others in terms of number of sensors.
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