Chapter 33
Modal Identification of Golden Gate Bridge Using Pseudo Mobile
Sensing Data with STRIDE

Thomas J. Matarazzo and Shamim N. Pakzad

Abstract This paper presents an application of a novel data collection method: mobile sensing. Mobile sensor networks
can provide extensive information similar to dense fixed sensor networks while conserving the ease of smaller networks.
However, mobile sensing data is expected to have missing observations in time and space, leaving data matrices incompatible
with common identification techniques. STRIDE is an algorithm implemented for modal identification using this class of
sensor data, which includes missing observations. Although mobile sensing devices are not widely available and large-scale
mobile sensors networks have yet to be implemented, pseudo mobile sensing data is extracted from a dense sensor network
using a simulated mobile sensor network. In this paper, ambient vibrations of Golden Gate Bridge are considered and pseudo
(simulated) mobile sensing data are populated from a subset that shares the paths of simulated mobile sensors. The paper
provides promising results to encourage the implementation of large-scale mobile sensor networks in future SHM endeavors.
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33.1 Introduction

Proper identification and classification of the current health of a structure is essential to accurately assess its expected
response to dynamic forces. As more spatial and temporal information is gained from a sensor network on a vibrating
bridge, this accuracy improves. This may lead to the impression that more sensors (larger networks) necessarily provide
more information and conclude that it is best to implement as many fixed sensors on the structure as possible during data
collection. However, even though larger networks can contain an improved accuracy in modal property estimations [1, 2],
it is important to choose carefully the sensor locations to maximize useful information, i.e. avoid collecting redundant data.
Guo et al. [3] presented a genetic algorithm to provide optimal placement in structural health monitoring (SHM) and [4]
introduced a methodology for system identification based on multiple models (chosen parameters).

Additionally, the efficiency of a dense sensor network array can be diminished by sensor cost, setup cost, setup time,
collection time, network reliability, power requirements, and physical limitations due to bridge geometries [5, 6]. While
wireless sensor networks may reduce some of these challenges, the network is still comprised of sensors that are fixed to one
location. The ultimate flaw of fixed sensors is they provide limited spatial information.

Furthermore, it is advantageous to work with preliminary mobile sensing data before implementing a real mobile sensing
network on a bridge to better assess its feasibility. In this paper, the preliminary mobile sensing data is referred to as pseudo
mobile sensing data, which is, in short, a specific subset of a fixed sensor network’s data matrix. The key is to choose
sampling matrices that reflect a unique mobile sensor configuration. Once missing observations have been properly identified,
appropriate alterations in a system identification algorithm can be considered.
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33.2 Mobile Sensing Data

While recent applications within SHM have been diverse, they are limited, leaving the current state of mobile sensor networks
as developing. Zhu et al. [7] created a moving sensor procedure which collected data at specific nodes, but did not record
data while in-motion. Sibley et al. [8] and Dantu et al. [9] implemented Robomote, a small, inexpensive robot allowing
mobile coverage of large-scale sensor networks. Partial system identification studies included a moving vehicle to investigate
identifiability of frequencies for a single bridge span with frequency domain techniques [10, 11].

Mobile sensor networks offer the benefits of using a dense sensor networks while significantly reducing setup efforts and
the other challenges listed previously. In these networks, fewer sensors can be used to collect data with less-limited spatial
information [12, 13]. However, a side effect inherent in mobile sensing data is the anticipated missing observations in time
and space—it is convenient to explain this issue by starting with a fixed sensor network.

Figure 33.1 shows an example of a fixed sensor data matrix resulting from a dense fixed sensor array. This complete data
matrix will have entries for all locations at all times. Matarazzo and Pakzad [5] described how mobile sensing data can be
written directly in terms of the fixed sensor data if the exact path of the mobile sensors is known and its sensing grid (spatial
and temporal resolution) coincides with that of the fixed sensors’. This is expressed mathematically in Eq. (33.1), where M
is an N x N sampling matrix with binary indicators along its diagonal and zeros elsewhere; its purpose is to account for the
data sampling mechanism and “mark” entries that have not been sampled.

Diry - M

DI - M=

Dobite = . (331)

DizE - M
Note the appearance of Dyppie depends entirely on the sampling matrices. For example, consider a single mobile sensor
that hops to the next sensing location for every time step, resets to the first location d time steps after the last location, and
repeats. Figure 33.2 shows the anticipated data matrix Dppite for this given mobile sensor path. The observed values are
exclusively located along specified diagonals. With this pattern in mind, the engineer can construct the appropriate sampling
matrices and generate what appears to be mobile sensing data, from a readily-available fixed sensor data matrix: this is
pseudo (simulated) mobile sensing data.

33.3 Pseudo (Simulated) Mobile Sensing Data

Again, pseudo (simulated) mobile sensing data can be extracted directly from a fixed sensor data matrix, i.e. without actually
implementing a mobile sensor network, if and only if the paths of the mobile sensors are known or the sampling grid is
consistent with the fixed sensors’. Given a fixed sensor data matrix Dgycq, the pseudo mobile sensing data matrix Dygpie 18
the subset of a fixed sensor network’s data matrix that is specified in the sampling matrices.

This approach enables the engineer to analyze countless mobile sensor network setups without actually collecting
additional data. These simulations can be used to assess the feasibility that a specified mobile sensor network is capable
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of successfully identifying the modal parameters of a bridge. While, in an actual mobile sensing network, there may be
some additional complications not present in the pseudo data, e.g. space—time distortion [12] or vehicle-bridge interaction
[14-16], it is essential to first establish the general applicability of a network.

Now that the collected data has been simulated with pseudo mobile sensing data, the resulting missing data problem as
described in [5] is well constructed and an appropriate system identification algorithm may be selected under the condition
that it can identify and process data sets with missing observations.

33.4 Structural Identification Using Expectation Maximization (STRIDE)

The Expectation Maximization (EM) algorithm [17-19] embedded in STRIDE provides an efficient method to identify
structural modal properties using a stochastic state-space model (or AR model [20]). STRIDE iteratively converges to
maximum likelihood estimates (MLE) of the model; the modal properties are calculated directly from these MLE. STRIDE
is an attractive method in this case since the Kalman filter equations are modified at each “problematic” time step to account
for missing observations [18, 21-24]. Note that in STRIDE, the actual imputed values for the missing observations in the
mobile sensing data matrix are arbitrary.

33.5 Golden Gate Bridge Application

Golden Gate Bridge is an iconic steel suspension bridge that connects San Francisco, CA and Marin County, CA over the
opening of the Pacific Ocean. The bridge has a total length of 8,981 ft (2,737 m), a center span of 4,200 ft (1,280 m), and
carries six lanes of North/South car traffic and two sidewalks. The fixed sensing data consisted of 80,000 samples collected
from 49 sensors at 50 Hz (a subset of the datain [1, 2])—this data was downsampled to 2.5 Hz. The network setup in Fig. 33.3
indicates 46 sensors on the West side of the bridge and three mirroring sensors placed on the East side of the bridge.

Simulated mobile sensing data was constructed on the basis of 46 mobile sensors traveling Northbound on the West side
of the main span, with three stationary (fixed) sensors on the East side. Mobile sensors proceeded to the next sensing location,
one by one, until the first sensor reached the North tower (after 46 time steps). Next, there was a delay of five samples (not
applicable to three stationary sensors on the East side); after the delay, the pseudo mobile sensor train repeated, 51 time steps
after the previous train began.

To reiterate, the total number of sensors on the bridge begins at four, increases by one each time step, until all 49 sensors
are on the bridge. The total number of mobile sensors decreases to 41 during the five sample delay (stationary sensors
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Fig. 33.3 Golden gate bridge sensor configuration [2]

Table 1_53.1 . Ejstirrlated modal Mode 1 2 3 4
E;?:?;};;Dg liii_ Si?rézfgtizll Type Anti-symm. Symm. Symm. Anti-symm.
Mobile Senso}s, and “Est.” Frequencies (Hz) Fixed 0.106 0.132 0.171 0.216
denotes results from [2] ML.S. 0.106 0.132 0.169 0.218

Est. 0.106 0.132 0.169 0.216

Damping (%) Fixed 2.14 1.80 4.82 1.56
M.S.  0.14 0.43 0.13 0.48
Est. 2.10 2.40 2.30 1.60
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remain). Then, mobile sensors begin to re-enter from the South tower as sensors on the North end move off—this second
phase repeats for the remaining data.

Table 33.1 provides a summary of the estimated modal properties. “Est.” denotes modal estimates from [2] and “M.S.”
denotes those from the Pseudo Mobile Sensors with STRIDE. The first four vertical modes were identified successfully. Their
frequency estimates were all within 1 % of those estimated in [2]. The damping ratios are also reasonably close considering
that damping estimates are known to fluctuate based on the identification method and the model order [25].

In Fig. 33.4, the identified mode shapes are presented which are again consistent with the results in [2]. Note that in this
simulation, Dpghile contained 10 % less observations than Dyyeq. Additionally, the proposed mobile sensing network requires
the setup o three fixed sensors as opposed to 49.

As mentioned earlier, a physical implementation of this mobile sensing network may face additional complications. For
example, if the sensors travel over the bridge by vehicle, dynamic-vehicle bridge interaction is of concern. However, [16, 26,
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27] have shown that lower speeds reduce complex behavior of the interaction by maintaining wheel-road contact, minimizing
road surface effects, and provide adequate frequency resolution in the response.

33.6 Conclusions

This paper presented a preliminary modal identification study of Golden Gate Bridge using mobile sensors and STRIDE.
Since data from mobile sensor networks are not widely available, pseudo (simulated) mobile sensing data are extracted from
a dense network of fixed sensors. This pseudo mobile sensing data represents a unique set of mobile sensor paths that define
the network configuration, i.e. locations of every sensor at each time step. The only condition for generating pseudo mobile
sensing data in this manner is to ensure that the paths of the mobile sensors are known and the sampling grid (spatiotemporal
resolution) is consistent with that of the fixed sensors’.

This technique enables the analysis of multiple mobile sensor network setups without requiring additional data collection.
These preliminary simulations can be used to assess the feasibility that a specified mobile sensor network is capable of
successfully identify the modal parameters of a bridge. This assessment is essential in justifying the implementation of
large-scale mobile sensor networks.

A subset of ambient vibration data collected from Golden Gate Bridge was used to generate a pseudo mobile sensing
network consisting of 46 moving sensors and three stationary ones. STRIDE was selected as the identification method
because it is easily modified to process data with missing observations. The results included a successful identification of the
first four frequencies, damping ratios, and mode shapes, indicating that the proposed mobile sensing network configuration
is feasible for determining the first four modes.

Not only did the pseudo mobile sensing data consist of 10 % fewer observations, but the proposed setup included only
three fixed sensors instead of 49 in the original data set. This application provides evidence to support real-world application
of mobile sensor networks since setup efforts have been reduced and a successful modal analysis was performed using less
data.

There are additional difficulties accompanying an applied mobile sensor network, which were not explicitly discussed in
this paper, but at this time, from a data processing perspective, the concept is feasible. The analyses of additional mobile
sensor networks may help determine optimal configurations for bridges on a case-by-case basis.

Acknowledgment This research was partially supported by a grant from the Commonwealth of Pennsylvania, Department of Community and
Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA).

References

—_

. Pakzad SN, Fenves GL, Kim S, Culler DE (2008) Design and implementation of scalable wireless sensor network for structural monitoring. J
Infrastruct Syst 14:89-101
2. Pakzad SN, Fenves GL (2009) Statistical analysis of vibration modes of a suspension bridge using spatially dense wireless sensor network. J
Struct Eng 135(7):863-872
3. Guo HY, Zhang L, Zhang LL, Zhou JX (2004) Optimal placement of sensors for structural health monitoring using improved genetic
algorithms. Smart Mater Struct 13:528-534. doi:10.1088/0964-1726/13/3/011
4. Saitta S, Kripakaran P, Raphael B, Smith IF (2008) Improving system identification using clustering. J Comput Civ Eng 22:292-302.
doi:10.1061/(ASCE)0887-3801(2008)22:5(292)
5. Matarazzo TJ, Pakzad SN (2013) Mobile sensors in bridge health monitoring. In: Proceedings of the ninth international workshop on structural
health monitoring (IWSHM), Stanford, p 8
6. Bagajewicz M, Sa M (2000) Cost-optimal design of reliable sensor networks. J Comput Chem Eng 23:1757-1762
7.Zhu D, Yi X, Wang Y et al (2010) A mobile sensing system for structural health monitoring: design and validation. Smart Mater Struct
19:055011. doi:10.1088/0964-1726/19/5/055011
8. Sibley GT, Rahimi MH, Sukhatme GS (2002) Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks. In:
Proceedings of the 2002 IEEE international conference on robotics and automation (Cat No. 02CH37292), vol 2, pp 1143-1148.
doi:10.1109/ROBOT.2002.1014697
9. Dantu K, Rahimi M, Shah H, Babel S, Dhariwal A, Sukhatme GS (2005) Robomote: enabling mobility in sensor networks. In: Proceedings of
the 4th international symposium on information processing in sensor networks, IEEE Press, April 2005, p 55
10. Lin CW, Yang YB (2005) Use of a passing vehicle to scan the fundamental bridge frequencies: an experimental verification. Eng Struct
27:1865-1878. doi:10.1016/j.engstruct.2005.06.016
11. Cerda F, Garrett J, Bielak J et al (2012) Indirect structural health monitoring in bridges: scale experiments. In: Proceedings of the seventh
international conference on bridge maintenance, safety and management, Lago Di Como, pp 346-353



298 T.J. Matarazzo and S.N. Pakzad

12. Unnikrishnan J, Vetterli M (2012) Sampling and reconstructing spatial fields using mobile sensors. In: 2012 IEEE international conference on
acoustics, speech and signal processing, IEEE, pp 37893792

13. Singhvi V, Krause A, Guestrin C, Garrett Jr, JH, Matthews HS (2005) Intelligent light control using sensor networks. In: Proceedings of the
3rd international conference on embedded networked sensor systems, November 2005, ACM, pp 218-229

14. Cai Y, Chen SS, Rote DM, Coffey HT (1994) Vehicle/guideway interaction for high speed vehicles on a flexible guideway. J Sound Vib
175(5):625-646

15.Deng L, Cai CS (2009) Identification of parameters of vehicles moving on bridges. Eng Struct 31:2474-2485.
doi: 10.1016/j.engstruct.2009.06.005

16. Cantieni R (1992) Dynamic behavior of highway bridges, 240 pp

17. Rubin DB, Dempster AP, Laird NM (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1-38

18. Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal 3:253-264

19. Digalakis V, Rohlicek JR, Ostendorf M (1993) ML estimation of a stochastic linear system with the EM algorithm and its application to speech
recognition. IEEE Trans Speech Audio Process 1:431-442. doi:10.1109/89.242489

20. Dorvash S, Pakzad SN (2012) Stochastic iterative modal identification algorithm and application in wireless sensor networks. Struct Contr
Health Monit. doi:10.1002/stc

21. Jones RH (1980) Maximum likelihood fitting of time ARMA models to time series with missing observations. Technometrics 22:389-395

22. Shumway RH, Stoffer DS (2010) Time series analysis and its applications: with R examples. Springer

23. Matarazzo TJ, Pakzad SN (2013) Structural modal identification using data sets with missing observations. In: Lynch JP, Yun C-B, Wang K-W
(eds) Proceedings of the SPIE sensors smart structures technologies, San Diego, p 14

24. Harvey AC, Pierse RG (1984) Estimating missing observations in economic time series. J Am Stat Assoc 79:125-131

25. Chang M, Pakzad SN (2013) Observer Kalman filter Identification for output-only systems using interactive structural modal identification
toolsuite (SMIT). J Bridge Eng 130703221853009. doi:10.1061/(ASCE)BE.1943-5592.0000530

26. Law SS, Zhu XQ (2005) Bridge dynamic responses due to road surface roughness and braking of vehicle. J Sound Vib 282:805-830.
doi: 10.1016/1.jsv.2004.03.032

27. Gonzdlez A, Covian E, Madera J (2008) Determination of bridge natural frequencies using a moving vehicle instrumented with accelerometers
and a geographical positioning system. In: Proceedings of the ninth international conference on computer structures technology, p 16



